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Abstract

We de?ne a graph and call it a wheel-sun?ower graph considered as one of the compartibility

graphs that may arise in computer-based network information systems.

Then we study characterizations that permit us to compute Tutte polynomials of wheel-

sun?owers using Tutte polynomials of generalized parallel connections. As one of the

applications of Tutte polynomials, we characterize wheel-sunflowers by numerical invariants

and deduce their T-uniqueness - that is, graphs determined up to isomorphism by their

Tutte polynomials.

We also apply the theory of Tutte polynomials to determine the component numbers of

links corresponding to Wheel-sun?ower graphs and show how these numbers change by

removing certain edges.
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CHAPTER 1

Introduction

Some of the researcli problems in matroid theory involve ?nding formulas that reduce coni-

putations of the Tutte polynomials of matroids to simpler computations [3]and searching

matroids that are determine<l by their Tutte polynomials [11, 12, 13]. Some other research

problems involve applying the theory of Tutte polynomials in other ?elds. For example, in

knot theory. 'li1tte polynomials are used to classify knots and links associated with planar

graphs [15].

This thesis focuses precisely on the issues above. First we are going to introduce a new

class of graphs called wheel-sun?ower graphs and then compute their Tutte polynomials.

Such type of graphs may arise in network information systems and parameters encoded

in their Tutte polynomials may be used to solve some of the many problems that arise in

them. One such problem is that of network reliability The second issue is that we are

going to establish that wheel-sun?ower graphs can be completely determined from their

Tutte polynomials. Graphs with such a property are called T-unique. T—uniqueness is one

of the applications of Tutte polynomials. Lastly we are going to apply the theory of Tutte

polynomials to classify links whose associated graphs are wlreel-sunflowers and variations

of wheel-sunflowers.

1.1. Overview of thesis

The structure of this thesis is as follows. In Chapter 2, we introduce and de?ne a wheel-

sun?ower graph. Then we give charaeterizations that enable us to use Tutte. polynomials

of generalized parallel connections to compute Tutte polynomials of wheel-sun?oxveis. In

Chapter 3, we give several paranieters of wlieel-sunflowers like the number of e_\jelesof

lengths 3, 4 and 5, that can be determined from the Tutte polynomial. These parameters

are used to prove T-uniqueness of wheel-sunflowers. Chapter /l focuses on one of the

applications of Tutte polynomials. It gives component numbers of links whose. associated
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1.2. BASIC DEFINITIONS 2

graphs are wheel-sunflowers. Furthermore it gives results on how the component numbers

of links change on the removal of certain edges in a wheel-sun?ower graph.

In some sections of this thesis we give new results unless otherwise stated. Namely, the def-

inition of a wheel—sun?ower in Section 2.1; properties of Wheel-sun?owers in Sections 2.1.1

and 3.2; T-uniqueness of wheel-sun?owers in Sections 3.3 and 3.2; component numbers

of links associated with wheel-sun?owers in Section 4.2; and component number of links

corresponding to a graph called a fan-sun?ower graph in Section 4.2.1.

Most of the work in Chapter 2 is not new. For instance in Section 2.1.2 we review the

de?nitions of inodular ?ats and Mobius functions [3, 6] and we apply these de?nitions to

wheel-sun?owers. In Section 2.2 we review different formulas of the characteristic polyno-

niial, Tutte polynomial and the weighted characteristic polynomial as given by Bonin and

de Mier The relationships of these formulas are used to work out the Tutte polynomials

of generalized parallel connections.

The work in Sections 2.3.2 and 2.3.3 is entirely found in We have only shown the

characterizations that will enable us to use the same on the cycle matroid of an n-wheel-

sunflower.

Most of the work in Chapter 3 corresponds to routine proofs of results on T-uniqueness of

graphs found in [12]. In the last chapter, Chapter 4, Section 4.1 reviews constructions of

links from planar graphs. Then we apply this to wheel-sunflower graphs.

1.2. Basic de?nitions

This section is devoted to reviewing the basic terniinology, notation and operations of

graph theory, matroid theory and knot theory that have been used in this thesis.

1.2.1. Graph theory.

We review the notation used and de?nitions that appear frequently in this thesis.

For all unde?ned notations we refer to any introductory book such as [20].

A graph G is a triple consisting of a vertex set V(G), an edge set E(G') and a relation

that associates with each edge two vertices, not necessarily distinct, called its endpoints.

If there is no confusion, we write V(G) and E(G) as V and E respectively. An edge of

G with endpoints '0 and w is denoted by {v,w}. In this thesis we study graphs without

‘i

1

;
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1.2. BASIC DEFINITIONS 3

isolated vertiees, but possibly with loops. An isolated vertex is a vertex of degree 0 and a

loop is an edge whose endpoints are equal.

A graph G is connected if each pair of vertiees in G belongs to a path; otherwise G is

disconnected. A path from a vertex '0 to a vertex u is a sequence of distinct alternating

vertiees and edges, v1,e1,v2,e2,~-- ,ek_;,v;¢, such that v1 = v, vk = u and for all i =

1, 2, - ~~ ,k' —- 1, ei is incident with vi and 12,-+1. The connectivity /~c(G)of connected graph

G is the smallest number of vertiees whose removal disconnects G. When n(G) Z 2, the

graph is said to be 2-connected.

A siibgraph of a graph G is a graph H such that V(H) Q V(G) and E(H) Q E(G) and

the assignment of endpoints to edges in H is the same as in G. An induced subgraph is a

subgraph obtained by deleting a set of vertiees. If G is a graph and A C V(G) we denote

by G |A the subgraph of G induced by A.

For every subset A _C_E, its rank is r(A) = n — k(GlA), where n = |V(A)\ and k(G]A) is

the number of connected components of G |A. We write r(G) instead of The nullity

of an edgoset is n(A) = [Al — r(A).

A cycle of length n is called an n—cycleand denoted by C”; for n = 3, 4, 5 we also refer to

them as triangles, squares and pentagons respectively. The minimum n such that G has an

n—cycle is called the girth of G denoted by g(G). A chord of a cycle C is an edge joining

two non consecutive vertiees of C. A graph with no cycle is acyclic. A forest is an acyclic

graph.

A graph G is planar if it can be drawn in the plane in such a away that no two edges meet

each other except at a vertex to which they are both incident. Any such drawing is called

a plane drawing of G. Wheel-sunflower graphs to be studied in this thesis are planar.

1.2.2. Matroid theory.

In this section we review the basic definitions and notation used in this thesis for

matroids. We refer to Oxley’s book [17]for further details and proofs of the results in this

section. Matroids can be de?ned in several ways. In this thesis we de?ne them in terms

of independent sets.

A matroid is a pair (E,I) where E is a ?nite set and I is a collection of subsets of E

satisfying the following properties:
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1.2. BASIC DEFINITIONS 4

/\/\*\<'\<*~<C/JtO>—=Q/Q
( ) WEI.

If I E I and I’ Q I, then I’ E I.

If I,I’ E Iand ]I'| < \I], then there exists an element :1: E I—I’ such that I’U:1: E I.

The set E is called the ground set of M, and the sets in I are the independent sets. We

give an example of a matroid.

EXAMPLE 1.2.1. Let G = (V,E) be a graph and let A be the set of acyclic subsets of E.

Then (E, A) is a matroid denoted by We call .M(G) the cycle matroid of G.

An isomorphism between matroids M and N is a bijection tp : —> E(N) such that

for each subset I Q E(M), I is independent in M if and only if <p(I) is independent in

N. The subsets of the ground set that are not independent are called dependent; minimal

dependent sets are circuits and maximal independent sets are bases. For a graph G, the

girth of a cycle matroid M = M (G) is the number of elements of its smallest circuit, and

it is denoted by g(M An element at such that is a circuit is called a loop; hence loops

are in no basis. If an element belongs to every basis then it is called a coloop. If a set

contains a basis, it is called spanning.

For any set X Q E, the rank of X is the size of the largest independent set in X, and

is denoted by r(X) and the nullity of X is n(X) = |X| — "r(X). If "r({a:}) : =

r({.i;, = 1, we say that the elements :1: and y are parallel.

A matroid invariant is a function f defined on matroids M and N such that f(M) = f(N)

whenever M and N are isomorphic. For instance, the rank, the number of bases, and the

girth are matroid invariants.

Given two matroids M1 and M2 with disjoint ground sets, E1 and E2, the matroid M1 EB.M2

has as ground set E1UE2 and as independent sets I(I\iI1®I\;/2)= {I1UI2 : I1 E I(M1), I-2E

I(M2)}. Such a matroid M1 G5 A/I2is called the direct sum of M1 and M2. A set X Q E is

called a flat if r(XLJe) = i"(X)+1 for all e géX. The closure of a set X Q E is the smallest

?at containing X. Furthermore, if there is a set of ?ats {X11,X 1,
- - ~ ,X,} of a matroid M

such that, for i E {O,1,2,--~ ,T},i"(X1)= i and for i G {1,2,-~- ,r},X(1_1) Q X1, then

{X11,X1, ~ - ~ ,X,} is called a saturated chain ofjlats of M. Given two matroids M1 and M2

with a common ?at N on the ground sets, E1 and E2 respectively, the matroid PN(M1, M2)

on the ground set E1 U E2 is called the generalized parallel connection. of I\/I1 and M2.

I
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1.2. BASIC DEFINITIONS 5

De?nitions 1.2.2 and 1.2.3 are used to compute Tutte polynomials of matroids using gen—

eralized parallel connections.

DEFINITION 1.2.2. A 1'elat2'0n ” §
”

is a partial order on a set X if it has:

(I) rellexivity (:1:§ it‘ for all :1: E X),

(ii) antisynnnetry § y and y § at implies that at = y),

(iii) transitivity § y and y § z implies that 1: § 2:).

DEFINITION 1.2.3. Boolean algebra B" is the partial order on subsets de?ned by inclusion

Q - that is, the Boolean algebra B", has elements as all subsets of a set {1, 2, - -
- ,n} and

Q as an order relation.

Sets with a partial order and an order relation are called partially ordered sets (posets).

So the Boolean algebra is an example of a poset.

1.2.3. The Tutte polynomial.

In this section we give the de?nition of Tutte polynomial and outline some of the

basic operations that are used to compute the Tutte polynomial of a matroid. VVe also

include the definitions of T-equivalent and T-uniqueness. The former is used to de?ne

graphs with same Tutte polynomial while the later is used to de?ne a graph G such that

for all graphs H, that are T-equivalent to G are also isomorphic to G. For a thorough

introduction we refer to [8, 10, 12, 13].

Much as the Tutte polynomial is defined in several ways, we are going to use the following

de?nition in this thesis. The Tutte polynomial of a matroid AI with ground set E is de?ned

asi “M; 1'» U) : EA;E($ “1)T<M)—r(A)(3/' 1)|Al"'(A)'

The Tutte polynomial of a matroid is naturally extended to a graph G as t.(G;a:,y) =

ZACE(r — 1)’(E)""(A)(y — 1)lAl”"'(A).Some of the basic operations that are used to compute

the Tutte polynomial are deletion and contraction. The deletion ]\~I\e is the niatroid on

E — e having as independent sets I(M\e) = {I : I G IUW), e Q I}. The contmct-I'mI. of an

edge e with end points u and v denoted by M(G/c) from the cycle matroid of G, is the

replacement of u and v with a single vertex whose incident edges are the edges other than

e that were incident to u and 11 and the resulting cycle niatroid 1\1(G/e) has one edge less

than The Tutte polynomml of a cycle matroid M = A/[(C1)can be computed by

applying the following operations recursively:

v
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1.2. BASIC DEFINITIONS 6

(i) If E I (/l,tl1e1e1t(]V[;a','y):1;

(ii) If e is 21 coloop, then !,(]\4;.17,y) : IE t(]W/e; I13,y);

(iii) If e is a loop, then t(M;:1;,y) = y t(M\e;;r,y);

(iv) If e is neither a coloop nor a loop, tl1en t(M; a:,y) 2 t(M\e; 17,11)+ t(M/6; 17,

\Ve say that two graphs G1 and G2 are T-equivalent if they have the same Tutte polynomial.

Furtlierniorc, a graph G is T~nn1lque if any other graph having the same Tuttc polynomial

as G is necessarily isomorphic to G. Several well known families of graphs such as wheels,

squares of cycles, complete multipartite graphs, ladders, Mobius ladders and hypereubes

rw

are known to be 1 -unique [11].

1.2.4. Knot theory.

I11 this section we summarize the knot theory used in this thesis. We give the ba-

sic de?nitions, notations and some of the operations on knots and links. We refer to

Adan1’s book [1]a11d Murasugi’s paper [16] for a thorough introduction to the subject.

A knot is a simple closed polygon in three dimensional space and it has a ?nite number

of vertices and edges. In the plane a knot is shown as a two dimensional ?gure with

self crossings known as the knot diagram. The knot diagram which does not give any

information about the type of crossing points and orientation is called a knot universe.

A knot diagram which is composed of one component is referred to as a knot a11d if it is

composed of more than one component it is called a link diagram.

Link diagrams can be of two types: oriented and unoriented. An oriented li11k diagram

consists of directed lines while an unoriented link diagram l1as no directed lines. We refer

the reader to [1] for a nice introduction to the subject. In this thesis we have considered

the case of unoriented link diagrams which correspond to wheel-sunflower graphs and their

variations. We are going to call the lines of unoriented link diagranis as components of a

link. For such an unoriented link diagrani K (G), that corresponds to a planar graph G,

its linking number L(K(G)) is determined by applying the theory of Tutte polynomials.
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CHAPTER 2

Tutte polynomials of wheel-sun?owers

In this chapter we are going to study the characterizations of wheel-sunflowers that will

enable us to compute the Tutte polynomials of Wheel-sun?owers using Tutte polynomials

of generalized parallel connections found in

2.1. The wheel-sun?ower graph

This section introduces wheel-sun?ower graphs and gives the formal de?nition of wheel-

sunflower graphs. Then we study some of the properties of wheel-sunflowers with regard

to their edges, modular ?ats and computation of the mobius function.

The join of simple graphs G and H, written G \/ H, is the graph obtained from the disjoint

union G+ H by adding the edges {{u,"u}I u E V(G), "u E V(H)}. For instance, an n-wheel

graph W”, is the join of a cycle graph C" and a complete graph K1 placed at the ”middle”

of C,,. We write l/V” : K1 \/ C,,. Edges from C7,,are called Tim edges of TV" and the edges

added are called spokes. A middle vertex is called a hub [15].

The n-Wheel-sunflower graph denoted by W Sn is built on an n-wheel graph, for n 2 2.

by adding n ”outer” triangles according to the following rule: One edge from each of the

”outcr” triangles together with its endpoints are identi?ed from the rim edges of an 11-wheel

W". De?nition 2.1.1 gives the formal de?nition of an n-wheel-sun?ower.

DEFINITION 2.1.1. Let F be a group of integers modulo n and W“, = C,,, \/ K1. Then for

n Z 2, an n—wheel-sunflower denoted by H/S,, is a graph with:

V(WS,,,)= I/(0,, \/ K1) u {b,->1: e F; 1),¢ W,,}-,

Z Eicn V K1) U {{bi1a"i}a{b‘i1ai+l}I € ai E big‘/1/'lI}"

An edge set of the form {{a,-,bi}, {b,,a,_H} : 11E F, ai E V(Ci,,), bi ¢ W,,} is called a petal,

and any ”outer” vertex bi §ZW” is called an apex of an n-wheel-sun?ower. Essentially

then, the number of petal edges added to an "n,-wheel-sun?ower is 211, since each of the n

7
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2.1. THE WHEEL-SUNFLOWER GRAPH 8

vertices from the rim is joined to two additional edges with a common vertex. Figure 2.1

is an example of a 6-wheel-sun?ower.

FIGURE 2.1. A 6-wheel-sun?ower graph

A wheel-sunflower graph can be regarded as one of the compartibility graph. A com-

partibiltty graph is a graph in which vertices represent objects being arranged, and edges

correspond to those pairs of objects which are compartible in some way [21]. For instance

wheel-sun?ower graphs can arise in computer-based network information systems in which

vertices from the rim correspond to computers that communicate in a ring and directly

to one large central server computer that coresponds to the hub. The apex can represent

smaller server computers for back-up information from an adjacent pair of computers cor-

responding to adjacent pairs of vertices from the rim. All edges in these cases represent

communication lines.

2.1.1. Edges of an n-wheel-sun?ower.

In this section we are going to study some properties that are immediate from the

vertex set V(WS'”) and edge set E(WS,,) of wheel-sun?ower graphs. We start by

presenting Lemma 2.1.2 which will be use to prove Proposition 2.1.3 on the number of

edges in an n-wheel-sunflower.

LEMMA 2.1.2. Let WSH be an n-wheel-sun?ower. Then lE(WS(n+1))l= lE(WSn)l + 4.

PROOF. From De?nition 2.1.1, to construct an (n + 1)-wheel-sun?owerVVSQLH),from

W5" we add the following four edges to E(WS,,) : one rim edge, one spoke and two petal

edges.
El

PROPOSITION 2.1.3. Let W5” be an n-wheel-sun?ower. Then lE(WS'”)l = 4n.
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2.1. THE WHEEL-SUNFLOWER GRAPH 9

PROOF. By using induction on n. For n -—- 2, we get WS; which has 4 petal edges,

2 rini edges which are parallel and 2 spokes, making a total of 8 edges. Assume that

the proposition holds for n : ls where n > 2. Then ]E(WSk)] = 4k. Consider the case

n = It + 1. Then by Lemma 2.1.2, we get lE(WS(;,+1))l: |E(WSk)] + 4. By the induction

ll_VI>0th@5iSW0 11?“/01 \E(WS(k+1))|= 4k + 4 = 4(k + 1). Hence the proposition holds for

any n.
[:1

2.1.2. Modular ?ats.

In this section we summarize key results about modular ?ats which are used in

Proposition 2.1.7. We start by reviewing the following de?nitions found in [17].

Let M = M (G) where G is a graph. If G is connected, then the rank r(M) of a matroid

M is given by r(M) = \V(G)| — 1. This can be extended as follows. If G has <v(G)

connected components, then r(M) = lV(G)l — w(G). It follows that if X Q E'(G), then

T(X) I ll/(GlXlll - w(GlXll-

EXAMPLE 2.1.4. From the de?nition of an n—wheel-sun?ower WSn, in Section 2.1 we have

r(M(WS.,,,))= ll/(WS.,,)\— 1 = 2n.

Recall, from Section 1.2, that a set X Q E is a flat if r(X U e) = r(X) + 1 for all

e Q X. Flats of ranks 1, 2, 3, and r(M) — 1 are called points, lines, planes and hyperplanes

respectively. The following de?nition of a modular flat in a matroid and its justification

are found in [6, 9].

DEFINITION 2.1.5. A ?at A of a matroid M is modular if for each flat X of M, we have

r(A) +r(X) = r(AUX) +r(/NIX).

In this thesis we are going to use Theorem 2.1.6 found in [6], to prove Proposition 2.1.7.

THEOREM 2.1.6. Let M be a matroid with its rank as r(]\l) and the rank of the ?at A of

M is k. Then A is modular if and only if A intersects every flat of rank r(M) — k + 1 in

a ?at of positive rank. In particular, a hyperplane H of M is modular if and only if H

intersects every line 0fM in a flat of positive rank.

PROPOSITION 2.1.7. Let W" be an n-wheel in an n-wheel-sunflower VVS.,,.Then M(W,,) is

a rank-n modular ?at in M(WS,,).

l
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2.1. THE WHEEL-SUNFLOWER GRAPH 10

PROOF. From the de?nition of an n-wheel-sunflower WS.,,, we have: r(M(WS,,)) =

ll/(WS,.)| — 1 = 2n. Hence M(WST,) is a rank-2n matroid. Furthermore, r(M(W,,)) =

|V(l/V,,,)l— 1 = n. To use Theorem 2.1.6 here we let It = n. Then we need to show that

]\[(W,,) intersects every flat of rank 2n — n+ 1 in a ?at of positive rank; that is rank-(n+ 1)

flats. So let X be a flat of rank n + 1 in M(WS.,,). All rank-(n + 1) ?ats in M(l4/Sn) have

at least one edge from E(WS.,,) which is either a spoke or a rim edge. Spokes and rim

edges are edges of an n-wheel W”. Therefore the intersection WT, O X contains at least a

spoke or a rim edge. Spokes and rim edges are rank-1 flats in G”. Hence 1"(W,,F1 X ) Z 1

as required.
[1

2.1.3. Mobius function.

In this section we give a brief guide, to the reader, on one of the invariants that

can be obtained from the Tutte polynomial called the Mobius function. We summarize

ideas on how the Mobius function denoted by Ir is de?ned on a set. For a thorough review

and basic properties of Mobius functions, we refer to [6, 23].

Recall De?nition 1.2.3 and the meaning of a poset from Section 1.2.2 which we use now.

DEFINITION 2.1.8. Let P be a poset whose intervals are ?nite and Int(P) be set of its

intervals. The Mobius function, ,u : Int(P) ——> Z, is defined recursively by

1, if fl} y.

M12y) =

__ 2
'

I§z<y;i(a;,z),if JJ < y.

In Example 2.1.9 we explain how to compute n((Zl,F ), where F is a ?at of a matroid M.

We will need this to compute the Tutte polynomial of the cycle matroid ]\I(WS~.l of an

n-wheel-sun?ower using generalized parallel connection.

EXAMPLE 2.1.9. A rank-n wheel W” consists of edges which can be ordered in the following

manner {1,2, 3, - ~ ~ ,2n}; see Figure 2.2. And then by defining the Boolean algebra, B2”, of

the set {1,2, - I - ,2n} and Q as an order relation, we can evaluate 11(0),F) where F E B2“,

It is already known that ;I((Zl,F) = (—1)lFl,where Fl is the cardinality of F [3, 23]. For

example, from Figure 2.2:

(i) All the six triangles are rank-2 flats of cardinality 3. Therefore their corresponding

Mobius function is (—1)3= —1;

“I
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2.2. TUTTE AND WEIGHTED CHARACTERISTIC POLYNOMIALS 11

(ii) All the six cycles of length ?ve with two chords with a common vertex are rank-4

?ats of cardinality 7. Therefore their corresponding Mobius function is (—1)7= —1;

(iii) A (3-wheel itself is a rank-6 flat of cardinality 12. Therefore its corresponding Mobius

function is (~1)12 : 1.

‘I

V

FIGURE 2.2. A 6-wheel

2.2. 'I‘utte and weighted characteristic polynomials

In this section we review formulations of the Tutte polynomial and the characteristic poly-

nomial as found in Recall the de?nition of the Tutte polynomial from Section 1.2.3.

The Tutte polynomial t(M; zr, y) of a matroid M on the set E is given by:

(22.1) t(M; 9;,y) = Xe; -1)"<M>-T<*‘>(y-1)'*‘l*’<*‘>.
Ag;

The characteristic polynomial X(M; A)of M is, up to sign, a special evaluation of the Tutte

polynomial of M : );(M; A) = (—1)"(M)t(M;1— A,O). The characteristic polynomial can

be formulated in a variety of ways. Equation 2.2.1 yields the following Boolean expression

of the characteristic polynomial. X/(M,A) = 2/4gE(—1)lA|A"W)"'(Al.This is called the

Boolean expression, because (—1)lA|is an evaluation of Boolean algebra. B“, using /J.(A)

where A E B”. Hence the characteristic polynomial can also be expressed in the following

way: X(M; A) = EMS POM, n(@,F)Al"(Ml""(Fl,where /1 is the Mobius function of M [23].

It follows from any of these formulas that X(]\".7;A) = 0 if M has loops. This is because one

of the properties of deletion-contraction recursion states that if e is a loop in a matroid /U,

then t(]\/I;m,y) = y t(1\/[\e;:r,y). And recall that y = O in the characteristic polynomial.

Thus according to Brylawski, for a contraction M/Z of M, the characteristic polynomial

X(M/Z; A) is nonzero only if Z is a flat of fl/I Definition 2.2.1 is due to Brylawski

DEFINITION 2.2.1. The weighted characteristic polynomial, X*(]\/I;m,y)of ll/I in terms

of the characteristic polynomial of contractions of M by flats is given by )Z(M;:r,y) =

??ats F of M



e

2.3. GENERALIZED PARALLEL CONNECTIONS 12

The following well known formulas make precise the statement that the Tutte polynomial

t(M; 11:,y) and the weighted characteristic polynomial )Z(M;113,y) are equivalent [3]:

(2.2.2) L(]l1;gj,y) =

(3!~ 1>r<M> ’

<2-23> >z<i/my) = <r—1>"<M>t<M.%+1,I>.

We illustrate this equivalence as follows. By simplifying the numerator )Z(M;y, (w — 1)(y —

1)) of Equation 2.2.2 using Equation 2.2.3 we have:

X’(/l/1;!/.(11I—1)(?J-1))= (y—1)"M’t(M; +1.y)

= (11— 1)T(M)i(M;$.11)-

By substituting this result (y — 1)T(M)t(M;x,y)in Equation 2.2.2 we get t(M;:r,y) as

required.

2.3. Generalized parallel connections

This section de?nes the cycle matroid of an n-wheel-sunflower WST1 using generalized

parallel connection. We are going to use the following assumptions for the matroids M1

and M2 on the ground sets E1, and E2 respectively, found in [3]:

QB/5“:2:
fl/111T= fl/f2|T,Wl1CICT = E1 Fl E2;

clMT is a modular ?at of M1; and

( ) clM2T is a modular ?at of M2.

DEFINITION 2.3.1. Let N denote the common restriction M1[T = M2lT. The generalized

parallel connection of M1 and M2 at T is a matroid denoted as PN(M1, A/I2)whose flats

are precisely the subsets A of E1 U E2 such that A F1 E1 is a ?at of M1 and A H E2 is a ?at

of M2.

Equivalently, the ?ats of PN(M1,M2) are the subsets of E1 U E2 of the form A1 U A2 where

A1 and A2 are ?ats of M1 and M2, respectively, and A1OT = A2 OT We shall use this

second formulation of flats in Section 2.3.3. We can now give the de?nition of the cycle

matroid of wheel-sun?owers using generalizedparallel connection as Proposition 2.3.2.

l
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2.3. GENERALIZED PARALLEL CONNECTIONS 13

Proposition 2.3.2 is required to apply the results of Tutte polynomials of generalized parallel

connection directly to the cycle niatroid of an n-whccl—sun?ower denoted as 1\/I(WS,1).We

are going to identify the two constituent matroids of M(WSn) as depicted in Figure 2.3.

vv
var mg;

FIGURE 2.3. Constituent matroids of W5"

PROPOSITION 2.3.2. Let WS,1\{{a,c},{c,b}} be an n-wheel-sun?ower with a missing petal

{{a,c}, {c,b}}, such that {a,b} is a rim edge and W“ U {{a,c}, {c,b}} be an n-wheel with

a petal {{a,c}, {c,b}}, such that {a,b} is the same rim edge as the ?rst. Let lVI(WSn\

{{a,c}, {c, and M(W,, U {{a,c},{c, be the two matroids on the ground sets E1 =

E(WS,, \ {{a,0}, {c, and E2 = E(W,, U {{a,c},{c, respectively. Then M(WS.,1)

is the generalized parallel connection PN(M1,M2) of M1 == M(WS',, \ {{a,c}, {c, and

M2 =1l/I(W,,U{{a,c},{c,b}}).

PROOF. The intersection E(WS,,\{{a, e},{c,b}})?E(W,,U {{a,c},{c, of E1 and

E2 is an edge set E(W,,1)of an n-wheel. So let T = M(W,,). Then:

]\41lT : ]\»il(WS,1\{{a,c},{c,b}})|l\1(l/V”)

: M(WS1L\{{a»C}>{C= _ EU/Val)

: M(WS1l \ {lawcl»{Ci \ (U{{ai1bilv{bivai+l}} \ {{a>Cl»{Ci

= M(W,,),

1-1

M1\T = M(W,1U{c1,c2})\M(W,,)

= M(W~U{{a1¢l»{¢J>}}l\(E2— E(Wn))

= M(WnU{{@1@},{@»bl}\{{@»¢}»{@=b}})

= M(W,1).
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Lot 6 bc an Qdgc in E(l/VS“). If e Q E(W,,). then e is one of the petal edges in either

E(WS~\ {{a7C}7fC>b}})01‘ E(W,, U {{a.c}, Furthermore r(W,, U e) = r(W,,) + 1.

Hence M(W,L) is a flat of both M1 = M(WS,, \ {{a.c},{c, and Ill; = i’\[(lV,.U

{{@»@li{@»b}l)-

Lastly we need to show that M(W,,) is a modular ?at of .111= M(W'S,, \ {{a.c}.

and M2 = M(W,, U {{a, c}, {c, M(W,,y)intersects every rank-2 ?at of M2 = ]\I(ll"',,U

{{a,c}, {c, Therefore, by Theorem 2.1.6 M(ll'n) is a modular ?at of A12. And for

]\/11= M(WS'.,,\{{a,c}, {c,b}}),its rank r(]\[1) is calculated as follows: r(M1) = §V(WS,,\

{{a,0}, {c, -— 1 = 2n — 1. Therefore by Theorem 2.1.6 we need to show that .lI(ll',,)

intersects every ?at of rank (2n — 1) — n + 1 = n in a positive rank, which is .M(l/V")itself.

So M(lV,,) is a modular ?at of M1 = M(WSn \ {{a.c}, {c,b}}). U

To apply the results of Tutte polynomials of generalized parallel connection we require

that M(l/V”) be a maximal common restriction of both M(lVS,, \ {{a.c}. {c.b}}) and

M(W,. U {{a,c},{c, This is shown in Proposition 2.3.3.

PROPOSITION 2.3.3. M(W,L) is the maximal common restriction of M(WS,, \

ffa» Cl»{<11bill and M(Wn U {{<1>¢l,{<I-.b}l)-

PROOF. We use contradiction. Suppose that M (Wm) is not maximal. Then there is

an e which is not in E(W,,) such that the intersection E(WS.,L\ {{a,c}, {c, F1 E(W,LU

{{a,c}, {c, has e as one of its elements. Since e is not in then e must be a petal

edge. But from Proposition 2.1.3, the number of petal edges in E(WS,, \ {{a,c}, {c,b}})

is 2n — 2 and number of petal edges in E(W,. U {{a,c},{c, is 2. Therefore if e is in the

intersection then total number of petal edges in n-wheel-sun?ower will be (212-— 2) + 2 — 1,

which simpli?es to 2n -— 1. This is a contradiction because the total number of petal edges

in an n-wheel-sun?ower W5” is 2n.
[:1

Throughout this chapter, when two matroids M1 and M2 are under consideration we are

going to denote their common restriction by N. But for the restriction to one inatroid M

we are going to denote it by M lT.

2.3.1. Properties of generalized parallel connections.

Our results on the "Ditte polynomials of wheel-sunflowers follow directly from Tutte

polynomials of generalizedparallel connections. Hence the rest of this section focuses on

s

‘i

-
&<g@6hA4»»<;=.‘

. ",

‘£-
'.

rs
‘9

3,
‘e

.
zs».“¢€i=e4/1*

-

ah
.5,

fl
g.
v‘;

.j_

>:8b$»>' it

Q:

ft
1
1

1

l



2.3. GENERALIZED PARALLEL CONNECTIONS 15

properties of generalized parallel connections found in First we turn to the ranks of

?ats in PN(]\»41,1W2).

Recall the meaning of the terms; rank, closure, ?at and saturated chain of ?ats from

Section 1.2.2. The rank of a ?at A of a matroid is perceived as the number of ?ats other

than closure cl(Ql)of an empty set in a saturated chain of ?ats from cl((Zl)to A Using

this perspective on rank together with the de?nition of the ?ats of PN(M1,1ll;;)it follows

that the rank of a ?at A1 U A; of PN(M1,M2), where A1 and A; are ?ats of M1 and M2,

respectively, with W = A1 O T = A2 F1 T, is given by Equation 2.3.1:

r(/11 U A2) = r~(W) + (TMi(A1)— T~(W)) + (rM2(/12)— 1"~(W))

= '!‘M1(A1)+’!'M2(A2)—TN(W).

In particular if A1 = M(WS,, \ {{a,c},{c, and A2 = M(Wn U {{a,c},{c, then,

the rank of a matroid PN(M1,M2) is given by Equation 2.3.21

T(PN(M1, I T'(A1UA2) = T(M1)-lr T'(M2)—

Notice that we can use equation 2.3.2 to calculate the rank of M(WSa)- Example 2.3.4

illustrates this rank calculation on the cycle matroid of an n-wheel-sun?ower.

EXAMPLE 2.3.4. Let M1 = M(WS,1\ {{a,c},{c,b}}), where WS" \ {{a,c}, {(3, is an

n-wheel-sun?ower with a missing petal {{a,0}, {c,b}} and M2 = M(W,, U {{a, 0}, {c,b}}),

where Wu U {{a,c},{c,b}} is an n-wheel with a petal {{a,c}, {c, Then by Proposi-

tion 2.3.3, the common restriction, N, of both M1 and NI; is the cycle matroid of an

n-wheel. Hence:

T(N) : ll/ll/VH)l'_1

7'(M1) : lV(WS1l\{{a>C}i{Cvb}})l_ 1

= 2n -1,

T(1\/12)= lV(W1»U{{@1@}»{¢»bll)l-1

= n+ 1.
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2.3. GENERALIZED PARALLEL CONNECTIONS 16

By substituting these in equation 2.3.2 we get

7‘(PN(M1>M2)l = T(M1)+ 1"(M2)— T(N)

= 2n

<2-3.8) = 1(M(ws,.)).

Proposition 2.3.5 is found in [3]and we will use it in Section 2.3.2.

PROPOSITION 2.3.5. Assume that M1, M2 are matrovlds on the ground sets E1, E2, and that

coml'1lt'1lons (G1)-(G3) on gene/rahzedparallel connections hold. Then the following property

holds: PN(M1,M11)/T I (M1/T) <9 (M2/T).

2.3.2. Characteristic polynomial of PN(M1,M2).

Recall that by Proposition 2.3.2 we can de?ne M (WS,,) as a generalized parallel connec-

tion PA/(M1,A12)of M1 = M(WS.,, \ {{a,c}, {c, and M2 = M(W,1 U {{a,c}, {c,b}}),

siich that N = M1|T : Mg|T, where T = M(W,1)is the cycle matroid of an n-wheel, W”.

To apply the de?nition of the weighted characteristic polynomial to a generalized parallel

connection PN((M1, M2) we need to know the characteristic polynomial of contractions of

PN(M1, M2) by flats. Lemma 2.3.6 given by Bonin in [3],addresses these contractions.

LEMMA 2.3.6. Assume that M1, and M2 are matro/ids on the ground sets E1, E2, and that

con.d2't'11ons(G1)—(G3)hold. For a flat F of PN(M1. ll/I2)with F? E1 = A1, FOE; = A2,

and F U T I l/V,we have:

(23.4) PN(M1,M2)/F : PN/W(M1/A1,M2/A2).

Turning to the characteristic polynomial, Proposition 2.3.5 and basic properties of the

characteristic polynomial give by Equation 2.3.5 [3]:

><(P~(Mi,Mz)/T;/\)= x(((Mi/T)<B(M2/TWA)

(23.5)
= x(M1/T;%)><(M2/T;A)-

The following theorem is given by Brylawski l3],and it gives the cliaracteristic polynomial

of PN(M1, M2).

THEOREM 2.3.7. Assume that ll/11,and ll/[2 are matroids on the ground sets E1, E2, and

that conditions (G1)-(C3) hold. If the maximal common restriction. N of ll/[1 and A12 has

» 1 ; )/(M ;,\)
no loops, then X(P1\/(M1,M2);X) =
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2.3.3. Weighted characteristic polynomial of PN(M1,M2).

Recall that the ?ats of M(WS,L) = PN(]\/[1,]\/12) are the Subsets of

Ell/l/S~\i{a1C}>iC>bll)UE(W11U{{a,c},{c,b}}) of the form A1 U A2 where A1

and A2 are flats of M1 : M(WS,, \ {{a,c},{c,b}}) and M2 = M(W,1 U {{a,c}, {c,b}}),

respectively, and A1 (1 T = A2 Fl T. Also, recall that from De?nition 2.2.1 we have

)2(M;-T1!/)I ZflatsFofM $|FlX(M/F31/l

Using this de?nition of the weighted characteristic polynomial )Z(M;a:,y) and the formu-

lation of the flats of the generalized parallel connection PN(M1,M2),it follows that the

weighted characteristic polynomial )Z(PN(M1,M2);ac,y) of PN(M1, Mg) is given by Equa-

tion 2.3.6

1

N 1 2 ?atsgof
N

flats Z of N with WQ Z

<2-3.6) X< Z /MW, z>w*Z'>z<M2/Z».11>)
?atsZ0fNwithW§Z

where /LN is the Mobius function of N. By applying Equations 2.2.2 and 2.3.2 to

)Z(PN(]\41,M2); 1", y) Bonin simpli?ed Equation 2.3.6 to get Equation 2.3.7.

T

1

t(P1v(]l/I1,M2); zc, ll) Z (U*1) (T) Msgomy|WlX(N/W;(3;_1)(y _ 1))

y|Z|
_ V><< /11v(W»Z) t(M1/Z»l,y))

?ats Z of N with WQ Z

|Zl

(23.7) X < 2 #1v(W,Zl(—'f1i/-1)T(Z
—)t(M2/Z;-1.9))

flats Z of N with WQ Z
y

where /LN is the Mobius function of N

From the characterizations presented in this chapter, we can therefore use the same for-

mula 2.3.7 to compute the Tutte polynomial of the cycle matroid 1ll(WSn) of an n-

wheel-sun?ower, by substituting M1 == M(WS,1\ {{a,c},{c, and M2 = M(W,LU

{{0.,0}, {c,b}}),where /LN is the Mobius function of the common restriction N of M1 and

M2.
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CHAPTER 3

T-uniqueness of wheel-sun?owers

In this chapter we are going to show that wheel-sunflowers are T-unique as one of the

applications of 'l\1tte polynomials. A graph G is T-unique if any other graph H having the

same "Ditto polynomial as G is isomorphic to G. Several recent papers show that certain

graphs such as wheels and ladders are determined by their Tutte polynomials [4, 11, 12].

The organization of this chapter is as follows. Section 3.1 is a review of basic properties of

the Tuttc polynomial as well as a summary of parameters of a graph G that are determined

by its Tutte polynomial t(G;x,y); Section 3.2 gives some properties of wheel-sun?ower

graphs which enable us to imitate the proofs of T-uniqueness of wheels. The ?rst two

sections contain main tools used in Section 3.3 to prove that wheel-sun?owers are T -unique.

3.1. The Tutte polynomial and rank-size generating polynomial

This section is a review of the de?nition of the rank-size generating polynomial in relation

to the Tutte polynomial as found in [12]. We also include some parameters that are

encoded in the Tutte polynomial of a graph G.

The rank-size generating polynomial is defined as: F(G; at, y) = EAQE:z:T(’llylAl,where the

coefficient of atiyj in F(G; x, y) counts the number of spanning subgraphs in G with rank

i and j edges. Both F(G; a:,y) and t(G; :t",y) contain exactly the same information about

G [12]. However, the Tuttc polynomial t(G;x,y) has several properties not shared by

F(G; 17, y). In particular, t(G; :13,y) satis?es the fundamental contradiction rule t(G; st", y) =

t(G -— e; 3;, y) + t(G/e;a:,y), provided that e E E(G) is neither a eoloop nor a loop, where

G — e and G / e denote the result of deleting and contracting the edge e in G respectively.

The proofs of Lemma 3.1.1, Theorems 3.1.2 and 3.1.3 are found in

LEMMA 3_1,1_ Let “G; any) : Ebijafyj. IfG has neither coloops nor loops, then r(G) =

ma:1;{z'1 bio 75O}, n(G) = ma:r{j : boj 750}-

Recall the de?nition of a 2-connected graph from Section 1.2.1.

18
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THEOREM 3-1-2 If7"(G) and n(G') are both positive, then the number of 2-connected com-

l’0"@"Ll5Of G Z3 mmll 1 bio 74O}. Otherwise, G has 2-connected components. In

particular, IfG is 2-connected and t(H; q;,y) = t(G; $)y), then H is @550 2_C07mec;g€d_

For the rest of this chapter we are going to follow the notation found in [12]. A cycle of

length n is called C.,, or an n-cycle; for n = 3, 4, 5 we also refer to them as triangles, squares

and pentagons. A chord of cycle C is an edge joining two non-consecutive vertiees of C. If

P(a:, y) is a polynomial, we denote by [aciyj]P(r,y)the eoef?cient of xiyj in P(:r,

To prove that a graph is T-unique, we ?rst show that some parameters of this graph are

determined by its Tutte polynomial. Theorem 3.1.3 provides a list of such parameters

which are used in this thesis. We refer to [12] for more details.

THEOREM 3.1.3. Let G = (V,E) be a 2-connected graph. Then the following parameters

ofG are determined by its Tutte polynomial.

The number of uertices and the number of edges.

The number of cycles of shortest length.

(iii) IfG is simple, the number of cycles of length three, four and five; for cycles of length

four it is also possible to determine how many of them have exactly one chord.

3.2. Properties of wheel-sun?ower graphs

In this section we are going to give results on number of triangles, number of cycles of length

four, each with exactly one chord, and number of cycles of length ?ve, each with exactly

two chords with a common vertex (that is triangulated pentagon), from wheel-sun?ower

graphs. These results will enable us to imitate the proof of T-uniqueness of wheels found

in [12]. We start by presenting Lemma 3.2.1 which we will use to prove Proposition 3.2.2

on the number of triangles in an n-wheel-sun?ower WS,,.

LEMMA 3.2.1. Let r(WS,,) be the number of triangles in an n-wheel-sunj“lowc'r ll/S,,. Then

T(WS(,,+1))= 7'(l/VS")+ 2,f01" Tl Z 2-

PROOF. From De?nition 2.1.1, the construction of WS(,,+1)from WS,, involves adding

four edges to E (WSH): one rim edge, one spoke and two petal edges. These add two more

triangles so that the total number of triangles in WS(,,+1)becomes 'r(WS.,,) + 2. El
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PROPOSITION 3.2.2. Let WS.,, be an n-wheel-snnflowev". Then T(WS,,) = 2n, for n Z 2.

PROOF. We are going to use induction on n. For n = 2, we get a 2-wheel-sunflower

IVS; which has 4 triangles. The two triangles have edge sets of a rim edge and two spokes

{{<1i17 (1121:{(11,-T},{am-Tl},{{CLg,a1},{(11,Lt},{(12, And the remaining two have the edge

sets of a rim edge and petal edges {{a1,a2},{a1,c1},{a2,c1}},{{a1,a2},{a1,c2},{a2,c2}}.

Assuine the proposition holds for n = k where n > 2. Then T0/l/Sk) = 2k. Consider the

case n : /If+ 1. Then by Lemma 3.2.1, we get T(WS(k+1))= T(WSk)+ 2. By the induction

11y1>01»l1<>siSW0 have T(WS(k+1))= 2k + 2 = 2(k + 1). Hence the proposition holds by

induction.
[1

Recall that a chord of a. cycle is an edge joining two non-consecutive vertiees of a cycle.

New we are going to give results on the number of all 4-cycles in an n-wheel-sunflower with

e.\:actly one chord.

LEMMA 3.2.3. Let p(WS,,,)be the number 0f4-cycles in WSH with exactly one chord. Then

/DU/VS(n+l)): /)(ll/Sn) + 21f0T Tl‘ Z

PROOF. To construct WS(,l+1)from W5", using Lemma 3.2.1, we add four edges to

E (WS,,y): one rim edge, one spoke and two petal edges. Each of the new rim edge and

spoke contributes one chordal 4-cycle. So the total number of 4-cycles, with exactly one

chord, in W'S(,L+1>,is p(WS,L)+ 2.
1]

PROPOSITION 3.2.4. Let W'S,L be an n-'Iuhecl-.<nn._fi0werand p(l’VS,,y)be the number of 4-

eycles with exactly one chord in WS,,y. Then p(WS,,,)I 2n for n Z 3.

PROOF. We are going to use induction on n. For n = 3 we get a 3-wheel-sun?ower

W S3 which has six 4-eyeles with exactly one chord. Such six 4-cycles have the following

edge sets. The ?rst three edge sets have a rim edge as a chord. Since there are three rim

edges in WS,,, then we have the following:

{{a*1aa2}7{a’l1$}7{a27:E}’{al’c1}’{a’27C1}}>

{{a2>a3},{(1%37}:ia3>mlv{Q21C2l>{(13)C2}}>

{{¢13,611},ias?l» ia1=35l>ia3>C3l»{ah C31}-
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In the next three edge sets the chord is a spoke. Since there are three spokes in WS,,, then

we have the following:

{i"1»l‘},{(11,112},{ag,a3}, {a3,a:}, {:c,a2}},

{{G'2’IE}?{(1%G3}?{a3aa1}:{ala 1;}:{maa3}}1

{{a3>:E}>{a31a'1}1{al1a2}1{a2;-T},{III,CL1}}.

Assume the proposition holds for n = is where n > 3. Then p(WSk) = 2k. Consider the

ease n = la + 1. Then by Lemma 3.2.3, we get p(WS'(k+1))= p(WSk) + 2. By the induction

l1_Yl>0th@5i5WC have P(WS(k+1))= 2k+ 2 = 2(k + 1). Therefore, the induction holds for any

n Z 3.
[:1

Now we are going to give results on the number of all 5-cycles in an n-wheel-sun?ower with

exactly two chords with common vertex. Such type of 5-cycles are also called triangulated

pentagons.

LEMMA 3.2.5. Let ((WS,L)be the number of 5-cycles in WST, with exactly two chords with

a common vertex. Then ((WS'(,,+1))= ((WS,,) + 3, for n Z 4.

PROOF. To construct WS(,,+1) from VI/Sn, using Lemma 3.2.1, we add four edges to

E (WS,,) 1 one rim edge, one spoke and two petal edges. The new rim edge contributes

contributes three triangulated pentagons: two of these include the new petal and one

which involve spokes and rim edges only. So the total number of triangulated pentagons

in l/VS(,L+1)is ((14/S,L)+3.
El

In Proposition 3.2.6 we are excluding the cases of n = 2, 3 because H/S2 has no triangulated

pentagons and a 3-wheel in a 3-wheel-sunflower has no triangulated pentagons.

PROPOSITION 3.2.6. Let WS” be an n-wheel-sun?ower and ((WS,.) be the number of

triangulated pentagons in WSW Then ((WS,L)= 3n, for n Z 4.

PROOF. We are going to use induction on n. For n = 4, we get a 4—wheel-sun?ower

W S4 which has twelve triangulated pentagons. Such twelve triangulated pentagons have

the following edge sets. The ?rst eight edge sets of triangualated pentagons have a petal

contained in two as follows:

{{a1,b1},{b1,¢12},{a2,asl,{'13»$l»{@?»@1},
{a1,<12l»{@2»$l}»

is
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II l FL(“H51181b1»(12l’,{(11,(14l,{(14,1El’,{m,a2l',{a1,a2l'{a1,1¢l'l*,,

Ha?’ b2l"‘lb?’aiil» ‘la3>a4l',{(14,1l‘»{$13,azl‘,{(12,(13l‘={(13,

‘{‘{a2»bzl’,{(12,(lal, {G2,all»,{ah 23]»,{r, a3}, {(13,a2}, {a2,

~[-[(,3,b3},{b3,£14},{,,,4,a1i, .[a1,a;}.,{$1Q3},{(13,0/4},.[a4,$].].7

{{(13»b3l',{(13,(Ml,{(13,(12l',{(12,93},{at,a4}, {(14,a3}, <‘[a3,

J

.r.r 1, 1 1 r
i W11»be = 154,111’,1(11,(12l',{(12,Il,{1,<14l’,{@4,r1il',{(11,1Fl'l,

II l, I l. I
LL04’ b4J’ Lb4’all? La4>(1311‘{a3>ml’:{xaall’: {ah 0/Ill’:'{a'4>1

Each of the last four edge sets involves four spokes and three rim edges only as follows:

{{a1>$}’{a2i$}i{a3>a3}>{a4>x}v{a1»a2}a{@2106},{a3,(14}l,

{{‘12»“El,{(13,1}, {(14,93},{(11,17},{(12,(13},{(13,(14l,{(14,(lill,

{{(13,93l»{(14,1‘l,{(11,5F},{(12,13l,{(13,(14},{(14,611},{(11,(12}},

{{a41w}>{al>$l>{(1%I'll»{a3>Iii {a4>a1}>{a1ia2}={(1%a3}}'

Assume the proposition holds for n = k" where n > 4. Then ((WSk) = 3k. Consider the

case n : A‘+ 1. Then by Lemma 3.2.5, we get §(WS(k+1))= ((WSk) + 3. By the induction

hypothesis we have: ((l/VS'(k+1))= 3k + 3 = 3(k + 1). Therefore, the induction holds for

any 12. Z 4.
Cl

3.3. T-uniqueness

Qur aim in this section is to study which information about an n-wheel-sunflower graph

W Sn. is contained in its Tutte polynomialand use it to prove its T-uniqueness.

In Proposition 3.3.1 we are going to prove T-uniqueness of wheel-sun?owers by imitating

the routine proof used to prove T-uniqueness of wheels [12]. The technique requires that

we consider the case where the smallest circuit of a graph G is a triangle and an edge in G

does not belong to three or more triangles. Because of this we are going to exclude W Sn

where n = 2, 3.

PRQPQSITIQN 3_3_1_ For every n Z 4, the wheel-sun?ower WSH is T-unique.
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1’1€()()F. V\'e begin our proof by taking a graph H Such that t(H. LL. y) : t(WS7L.$_ y) for

1/1 Z /1. Tlieii by applying Theorem 3.1.2 we get that H is a 2-connected graph. Since the

graph H is 2-connected and l.(H;11:,3/) = t(lVS1r;9~'»YJ),511911by applying ThCOI"0m 3-1-3 ‘B0

H we also obtain the folloxviiig additional information:

(ll ll/(Hll I l/(l’l"YS,1ll1 2111+ 1, from De?nition 2.1.1 of l/VS”;

(ii) lE(H)l I |E(l1VS,,,)|I 412.,from Proposition 2.1.3 of Section 2.1.1;

(iii) H has 211. triangles. as l/VS“, in Proposition 3.2.2;

(iv) H has 211. cycles of length 4, as I/VS“, all of which have exactly one chord, from

Propositi<m 3.2./1.

Now belore proving T-uniqueness of wheel-sun?ower graphs for n Z 4, we are going to prove

a couple. of claims that must be satis?ed by the chosen graph H. We start by reviewing

the delinitions of a complete graph and a bipartite graph as found in [20].

./\ complete graph is a graph where every pair of distinct vertiees are adjacent. A complete

graph on irz.-vertiees is denoted by K... A bipartite graph is a graph whose vertex set can

be partitioned into two non empty sets V1 and 16 in such a way that every edge joins a

vertex in V1 to a vertex in V2. A complete bipartite graph has every vertex in V1 adjacent

to every vertex in V2. If V1 has T‘ vertiees and V9has 5 vertiees then the complete bipartite

graph is written as I\’,.,_§and V1 and V2 are called partite sets of size 7" and 3 respectively.

New we are going to state and prove the claims. Claim 1 entirely corresponds to that of

T-uniqueness of wheels found in [12]. \Ve prefer to repeat the same here for completeness

of T-uniqueness of wheel-sunflower graphs.

Claim 1. There is no edge in E(H) belonging to three or more triangles.

PROOF. Let us show that it is possible to obtain from t(H;;1;,'g/)I t(l~VS,,;.1',r_z/)the

mnnber of subsets of E(H) consisting of three triangles meeting at a single edge, or which

is the same, or subgraphs K13 with an extra edge joining the two vertiees in the partite

set of cardinality two: call these subsets IQ3. Such type of subgraphs contribute to the

c0<;{11<;1@111of $41/7in F(H;$,y). There are other three subsets of E(H) that contribute

to the coeiiieient of 5341/7.We study ?rst which other subsets of E(H) contribute to this

coefficient (Figure 3.1):
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(1) Cycles of length ?ve with two chords with a common vertex (that is triangulated

pentagon).

/\/\C»J[\D\/\/S11l>$§1"<1Ph$K23 With all CXtra edge joining two vertices in the partitc set of order three.

Complete subgraphs K4 plus one edge.

WE?-AW
FIGURE 3.1. All possible subgraphs in H with rank 4 and size 7 in addition

to Iqg

The situation described in (3) is impossible because there are no K 4 in H. Using the fact

that each cycle of length four must have one and only one chord then situation (2) is

also impossible. This implies that a cycle of length 5 cannot have three or more chords.

Therefore, the only contributions to [:c4y3]F(G;ac, y) are KQ3and triangulated pentagons

to get Equation 3.3.1:

(33-1) l1v4y3lF(G;:v,y)= t+¢

where c is the number of cycles of length ?ve as in equation 3.3.1 and t is the number of

KI3 [12]. Now we have to show that the value oft in equation 3.3.1 is zero. To see that

t : O we need another equation involving t and c. This equation is obtained by analyzing

the coefficient of 1'43/6in F(H; Ly); that is, subgraphs in H with rank 4 and size 6. The

possibilities are the following (Figure 3.2):

/—\/-\/\J-\C»Ql\')e—-\/\/\/QZ1>Il>
Two edge-disjoint triangles.

cycle of length four with its chord and any other edge.

cycle of length ?ve with one chord.

( A subgraph Km.

Such type of subgraphs presented in (1) and (2) contribute 1%? — n and n(2n — 5),

respectively, to the coefficients in F (H ; 2:, y), where n is the order of each subgraph. Each

cycle of length ?ve must be triangulated, otherwise there would be a cycle of length four

without chords. Since the maximum number of chords in a cycle of length ?ve is two, see

Figure 3.1 case (1), then the number of cycles of length ?ve with one chord equals twice

the number of triangulated pentagons. On the other hand, in K23 there are three cycles

of length four without chords, refer to Figure 3.2 case (4) because that is K 2,3-
AS W0 have
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A/* <§>\
<3 <.>

FIGURE 3.2. All possible subgraphs in H with rank 4 and size 6

seen previously the chord must join the two vertiees in the partite set of cardinality two.

This means that in H the number of K23 equals the number of KJ3. Hence we obtain

Equation 3.3.2 involving t and c.

(33.2) [x4y2lF(G;iv, y) = t + 2c + ZL%<l1—1—)-— n + n(2n — 5).

Equations 3.3.1 and 3.3.2 imply that it is possible to obtain t and c from the coef?cients

of t(H;:L',y) : t(WS',l;:1:,y).As in WSn, for n Z 4, there is no edge belonging to three

triangles, then the value of t must be equal to zero.
El

The proof of the next claim is an imitation of the proof found in [12] for wheels. We start

with some definitions and notation used in Claim 2. We are going to call an edge e G E(H)

a diagonal edge if it is the chord of one cycle of length four; if e is the chord of the 4-cycle

C4, then we write e = d(C4). If e is not the chord of any cycle of length 4, we are going to

call it a non-diagonal edge. In a wheel-sunflower graph, diagonal edges are rini edges and

spokes, while the non-diagonal edges are petal edges.

Claim 2. In H there are 2n diagonal edges and 2n non-diagonal edges.

PROOF Lot U be the SC; U = {(@,C4); e = d(C4)}.Let us de?ne pi as the number

of cycles of length 4 having an edge ei as a chord. By Claim 1 we know that 0 § pi § 1,

that is each cycle of length 4 has either one chord or zero. Therefore the cardinality of U

equals 2n because there are exactly 2n cycles of length 4, from Proposition 3.2.4. But also

we know that there are 4n edges in WS", from Proposition 2.1.3 of Section 2.1.1. Assume

that every edge in WSH is a chord. Then |U\ = p1+' ' '+P4n- This implies that there must
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be 211.edges with pl = 1 and 2n edges with pl = O because we have already said that H
has 2/11.-e_v("lesof length four by applying Theorem 324 to H. D

From now on we are going to assume that the diagonal edges are e 6
- that is1:

' ' 1

1 271» 1

/,1 : . . . ~_= p2“ = 1 and p-g,..il1 = ' ' ' = /Mn = O for the non-diagonal edges {e21i+1~ - . e4 17 7 TL
'

Claim 3 is also an imitation of the routine proof done in [12]for wh@@1g_

Claim 3. A diagonal edge belongs to exactly two triangles and a non-diagonal edge belongs
to exactly" one.

PRO()I~‘. Consider the set F = {(e,t) : e is an edge of triangle t}. Let us de?ne Tl as

the number of triangles that contain an edge ei. From Claims 1 and 2 we know that Tl = 2
for 1 § IllS 2" and that Ti S 1 £01‘ 211+ 1 § z' 3 4n. Therefore summing over all triangles
in H, we deduce that the maximum value of [F] is 2n + 4n = 6n. But by summing over all

411 edges, we obtain |F| = Tl + ~ - - + T4,, = 41-1,+ ¢2n+1 + . . . + 7-4" S 6” Hence Ti : 1 for

211+ 1 § i § ‘in and the claim is proved. [I

Now in an n-wheel-sunflower graph let us call all squares, whose diagonal edges are rim

edges. as diamonds and denote them by dl».So we de?ne a diamond dl as follows.

DEFINITION 3.3.2. A diamond d,-, in an n-wheel-sunflower graph is a square having a rim

edge as a chord.

Claim ~1. If every vertex 1* E V(H) is incident with a non-diagonal edge, then there is a

second non-adjacent edge incident with U.

PROOF. Let f be the non-diagonal edge incident with v and let dl be the unique

diamond that contains f. Then this diamond dl contains another edge incident with v, call

it fl. If fl is a non-diagonal edge, we have ?nished. If not, then fl is a diagonal edge and

there exists a diamond dg different from dl and containing fl. Let f2 be the second edge

of (12i11Qjd()nL with 1)_ Then by applying repeatedly the previous argument, we construct

it succession of diagonal edges f, fl, f2, ~ -- ,fk incident with v. Note that edges are not

repeated in this list, because, by Claim 1, there is no edge belonging to three triangles.

Furthermore, note that these diagonal edges correspond to spokes in an n-wheel-sunflower

graph. As the number of edges is finite, we must necessarily end in a non-diagonal edge

incident with v, necessarily different from fl. El



3.3. T-UNIQUENESS
27

Now to prove the next elaim we are going to use the followingde?nitions A h
'

I I .. grap 1S

i-oi1iu»ete<lif <\v<\iy pair of ve1.tices is joined by a path Secondlya maximally connected'

:

<*<>111I“’“"“l'is *‘* ""’“““"l"“l ~*‘1l>t€1‘"'I>l1of a graph to which no vertex can be added and it still
be eonneeted. This maximally connected component will bc referred to as the Conncctcd

component in this thesis. Henee, examples of connected components in WS,, are wheel-

sunflowers with a missing spoke l/VS” \ {(1,55}or Wheepsun?owcrs with a missing rim edge
ll'S,, \ {(1,I2}.'l‘heir rank is still 2n and the size is 4n — 1 since they have one edge missing.
For a tliorough introduction to the subject of connected graphs we refer to [20]. The

following Lemma is used in proving Claim 5.

LEI\fIM»\ 3-3-3- LI’! W5” \ {fan-’1?}}be an n-wheel-sun?owergraph without spokes {ai
Then. E(ll/'S,, \ {{u.,,:1f}}){: 3n,

PROOF. We know that an 11.-wlieel-sunflower WSH has 4n edges from Proposition 2.1.3

of Seetion 2.1.1. Furtberniore, from De?nition 2.1.1 of I/VS” there arc n spokes. Since WS,,\

{{(L,',;r}} is obtained by deleting all spokes {(1,337}in WSW then |E(WSn \ {{ai,ac}})|=

lE(ll'5i»)l “ lUi':i{(1i_<1>}|= 4" - "- U

Claim 5. There is no subgraph in H isomorphic to the wheel-sunflower WSP for p < n.

PROOF. Recall the relationship between rank and size of the wheel-sunflower. We know

that ll 'S,,has rank 2p from Section 2.1.2 and size 4p from Proposition 2.1.3 of Section 2.1.1.

The proof of Claim 5 consists of showing that the coefficient of :1:2”y4"in F(H; ac, y) is zero

for all p < n. This is equivalent to proving that in WSH there is no subgraph G of rank 2p

and size ~11).\\'e are going to use this equivalent form. Then we are going to show that it

is impossible to find a subgraph in WS” with the relationship of rank 2p and size 4p.

If a subgraph of IVS“ does not contain the central vertex (the hub), then we have the

followingpossible eases:

(i) it is a forest or;

(ii) edge-disjoint or vertex—joint triangles or;

(iii) a graph I/VS” \ {{a,», and its size is 3n from Lemma 3.3.3 and its rank is IV(WS,L\

{{az-, _ 1 : 2n — 1, so it cannot be a wheel-sun?ower W51»-

“
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Therefore, the subgraph G must contain the cen tral vertex Now we are
' '

~ going to consider
the subgraph that is the maximally connected component in WS,, that Qontajns the Contra}
vortex. Let W Sk \ {(1,1:}be an n-wheel-sunflowerwith a missing spoke {a 2:} This is the
connected component in WSk that contains the central vertex at with rank 2k which is the

same as that of W Si, but its size is 4k -1. The same argument applies to another Qgnngctcd

component of lVS;,~which is an n~wheel-sun?ower with a missing rim edge {a b} denoted

by WS,,. \ {a, b}. This implies that the connected component G that contains this central

vertex has rank 2k and size at most 4k — 1. The rest of the components are edge-disjoint or

vertex-joint triangles and forests. So again it is impossible to reach the required relation

between rank and size, which is rank 2p and size 4p. [:1

Recall Proposition 3.3.1 about T-uniqueness of wheel-sun?owers which we re-state and

prove now.

PROPOSITION 3.3.4. For every n Z 4, the wheel-sun?owerWS,, is T-unique.

PROOF. To prove this it means we should be able to construct an n-wheel-sunflower,
for n Z 4, isomorphic to a graph H, using the diamonds d,- which we have de?ned in

De?nition 3.3.2. Recall that the set of all non-diagonaledges is denoted by {e2n+1,- ~ - ,e4,,}.
Now let V be the set of all elements of the form (e,v) where e E {e2,,+1,- - ~ ,e4,,}is a non-

diagonal edge in G and v is a vertex incident with e in G such that G is a subgraph of

H . Recall that non-diagonal edges correspond to petal edges in WS,,. Therefore the size

[VI= 6n — 2n because there are Zn non-diagonaledges, each non-diagonal edge is incident

to two vertices and half of the number of vertices is counted twice. Let 6; be the non-

diagonal degree of 11,-, that is, the number of non-diagonal edges incident with vi. By Claim

4. either 6,4is zero or is greater than one. Now recall that H has 2n+ 1 verticcs. Therefore,

by using all the vcrtices of H, we must have:

lvl=6i+6;+~--+6;..+i=4n-

This implies that there is at least one vertex with non-diagonaldegree equal to zero; assume

it is v1. That means v1 is incident only with diagonal edges. We can now reconstruct the

wheel-sunflower I/VS" as follows. Let fl be an edge incident with v1; then fl belongs

to a diamond d, which contains a second edge, f2, incidcni with 111- A5 f2 is diagonal,

there exists a new diamond dz Cwli?ining f2 and an edge f3 incident with U1‘ Applying

successively the same argument, we obtain a list of diagonal edges f1, - - -

, fk incident with
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CHAPTER 4

Component numbers of links from wheel-sun?owers

In this chapter we apply the theory of Tutte polynomialsto classify links associated with

wheel-sun?ower graphs using component numbers. We start by reviewing the relationship

between a graph and its corresponding link in Section 4.1 and use this relationship to

construct links from wheel-sun?ower graphs. Then we give number of components in links

corresponding to wheel-siin?owers and their variations in Sections 4.2 and 4.2.1.

4.1. Construction of a link from an n-wheel-sun?ower

In this section we introduce how a link K (WSH)from an n-wheel-sunflower WSH is con-

structed. To do this we are going to construct a diagram which we call the link universe

I/'(I\'(ll'S,,)) of an 11-wlieel-siiiifiower.

\\'e start by <-oiistiuetiiig the medial graph from an n-wheel-sun?ower and then replace the

\'(‘l'Il(‘(‘S of the medial graph by crossings. Then we de?ne the part which goes under or

over zit it erossiiig to get a link K(WS,,).The medial graph of a graph WSn denoted as

H I H(l'l'S ) is de?ned as follows:

Dl~IFlNl'l‘lON ~l.1.1. Let the vertiecs of H correspondto edges E(WS,,)of W51» and let W0

\'ei‘liees of H he eoiiiieeted by an edge if the correspondingedges in WS" are subsequent

g
' WS Then H — H(WS,,) is called the

iii the e_v<'lieorder of edges around some ver ex in Tl‘
'

iiiedial graph of ll/'S,,.

By i'eplaeiiig the vertices of H (WSn) With ¢T055l"9$the Yesulti?g diagram is called the

.
It iS called the link

limk iixrzxiliiersrrcorresponding to W5" and is denoted by U(K(WS"))

. .

- -

-

‘

s - that is it does not sa

universe because it does not give information about the crossing ,
Y

which crossing is an overpass and which one is an underPa5S l15l-

. -

' 6- h 1- ? er.

EXAMPLE 4.1.2. Figure 4.1 shows a link universe correspondmgto a W ee Sun OW

.

' h 1'd 1' f 't

Notice that the dotted graph is a 6-wheel-sun?owerWS6, while t e S01 incs orm 1 S

corresponding link universe.
30
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Q

.

FIGURE 4.1. A link universe from a 6-wheel-sunflower

A link K (IVSH)from WSH is obtained from a link universe by de?ning the part which goes

under or over at a crossing. Figure 4.2 shows a construction of a 6-wheel-sun?ower (dotted

lines) and its corresponding link, K(WS6)(solidlines).

W
K \

s e~/~\ri \@

Oi

FIGURE 4.2. A link K(WS6)correspondingto WS6

three com-

t
Notice that by traciiig crossing cycles in the link diagram Kl“/S6)»there am

,

-
i

'
‘ the term com onen

porien/,s. l‘hc l»Cl‘11l c0*rnp0ne1itincans a crossing cycle111 a llnk and P

-

'

.
For further details on

mmiber incans the iiiiiiiber of crossing cycles that form a link

coiistriictioii of links froin graphswe refer the reader t0 l14l-

,

'

'

t d link diagram

Iii this tlicsis we arc going to consider the case where KIWSH)15 an “none” 6

.

-

~ r

,

are oin to consider the case o

corrcspondiiig to ‘n,-wheel-sun?owersWSII‘ That 15» We g 5

. -
d t d L K G ‘S

links witlioiit dircctioii. In this case the llnklllg number of K(G)’ eno e as ( ( )) 1

de?ned as follows [I5]:

I



ml

4.1. CONSTRUCTION OF A LINK FROM AN n-WHEEL-SUNFLOWER 32

DEFINITION 4.1.3. For an unoriented link diagram K(G), a number L(K(G)) =

(~1)E(G)(—2)“‘1where c is the component number of K(G) and E(G) is the edge set

of G.

EXAMPLE 4.1.4. Using De?ntion 4.1.3 on a 6-wheel-sunflower,WS6, we have

L(K(WS6)) : (_1)E(WS6)(_2)c—1

= <-1>“<-2>3'1= 4.

For a graph G, with the Tutte polynomial, t(G, 11:,y), it is well known that the evaluation

t(G, -1, —1) = (~1)E<G)(—2)‘—1,where c is the component number of the link whose

universe is the medial graph of G [15].

Now we review relevant ideas playing a role of determininglinking numbers in link diagrams

associated wheel-sunflowers. Proposition 4.1.5 is given by Mphako [15].

PROP()Sl'l‘I();\' -1.1.5. Lat G be a planar graph. Then

(11)L(]\'(G)) = (—2)""1ifG is a graph with n vertices and no edges. Thus L(K(G)) =1

'11_/‘G1s <1. s-1'n_(/leIIcrI.e.T,'

(1./.)L(I\'(G)) : A1 ifG is a coloop or a loop;

(I/'4)14 ( ll I rL(1\'(G\*°-ll ife is (1 10°F!

(lip) 1,[1\'( )) 1 —L(I\'(C/0))ife is a coloop; and

([1)1,[]\'[ )) 1 L(1\’((,‘\ + L(K(G/6)) ife is neither a loop nor a coloop.

’\471

535373
The next proposition, also given by Mphako[15],gives other graph 0p0r&ti0I1SWhi?h <10 not

a1l'<'ct the conipoiicnt. number of the associated link. Proposition 4.1.7, uses the following

<lcIinitions.

DI<:I~‘1NI'I‘IoN11.1.6. For any graph G I

-
- - - ~ .

'

e common vertex has de rec
(I) /\ se1"i<~s pair is a pair of any two edges e and f 1" G whos g

2.

(ii) A parallel pair is a pair of any two edges 6 and f that form a 2'CyC1CIn G‘

PR.OPOSI'l‘ION4.1.7. Let G be a plana1‘9mPh-The”

QQ ‘>1

iv Low >>= L<1~"<@/6/r>>I/6 wdf “I6 “ W’ ‘ind
([2])L[K( )) = L( (G\e\f)) ife and f are aparallelpau".
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4.2. Component numbers of links associated with wheepsun?owers

In this sect ion we determine component numbers of links corresponding to wheel-sun?ower
gf?pil?. We si an by looking at how these component numbeis change with the removal of
certiiiii e<lges in an 12-wlieel-s1iiiflo\vei"graph,

T he following notation is used. A spoke is denoted by {ohm},where a,~ is any vertex in
the run and .1‘ is the cemral vertex of an n-wheeksuniiower. Recall that an edge of the

form {rI,.1I,,1} for all i E {l.‘2. ~ -» .n.n + 1 = 1} in an n-wheel-sun?ower is called a rim

edge. But il‘UIIl now on. if one run edge is under consideration we will denote it as {a, b}.
As such we are goiiig to will an edge set of the form {{a.c},{c,b}}as a petal such that

r is the vertex wliere the two petal edges {rte}, {c,b} intersect and {a,b} is a rim edge
under eoiisidemtion in IVS". Lemma 4.2.1 is used in Proposition 42.2.

LEi\IM.'\ -1.2.1. Lcf IVS; \ {n.;r} be a 3-wheel-sun?owerwith a missing spoke {o,.r} and

1\’(WS;;\ {a,;1:})be its corresponding link. Then K (WS3\ {a,:c})has three components.

PROOF. By using the method in Section 4.1 we construct K(WS3 \ {a, from WS3\
{(1,41:}in Figure /1.3 and count its components. III

/fig

\

Ficum; 4.3. A link K(WS3 \ {a,w})Corresponding$0 W53 \i<1,fB}

PROPOSITION 4.2.2. Let WSH \ {a,a3}be an n-wheel-sun?owerwith a missing spoke{a,ac}

and K(WS,, \ {(1,;1:})be its correspondinglink. Then

(11)Ifn is odd and n 2 3 then K(WSn\ {a,r}) is <13-W-

(ii) Ifn is even and n Z 2 then K(W$n\ {dill is a 2‘h"k'

n = 2 then K(W-52\ {a7$})is a link 7%from

as two components. For n = 3 we have

PROOF. We use induction on n. If

the table of knots in the Appendix. Hence it h
- -

= 2 - 1
L(K(WS3 \ {a, ;v}))which is a 3-link by Lemma 4.2.1. Assume it 18 true for Tl m
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and n = 2m for some m > 1. Now consider n = 2m+1 and n = 2m + 2. Assume that Qach

diagram in Figure 4.4 represents the number L of the link corresponding to the diagram.
We start with a d-wheel-sun?ower with a missingspoke {(1,117}denoted by W.S'd\ {a,x}
and increase it to a (d + 2)-wheel-sun?owerwith a missing spoke WS(d+2)\ {(1,112}.Thus

by applying Propositions 4.1.7(z'),and 4.1.5(z'ii)accordinglywe get Figure 4.4.

3
\ O

/4. l
4

.

/t FQ

FIGURE 4.4. Computation of L(K(WSd \ a,

Hence L(I((IVS(,,,2; \ {n.1*}))= —L(K(WSd\ {a,z})). Thus substituting d+ 2 by n =

2m + l or u : ‘2/11+ 2 we have the following results:

L(]\'(llYS(‘Z1n+l)\ {ai$})) : L(K(l/VS(21rz~1)\ {a‘v‘r}))>

L(1\'(ll"S('.?ru+2)\ ia~-TD) : L(K(l/I/S(21rr)\

'l‘liei‘elo1'e. the proposition holds by induction. Cl

I1l‘l.\I.\I1\ 4.2.3. Lvt IVS; be (1 2-wheel-sun?ower and K(WS2) be its corresponding link.

’1'/zen [\'(ll'S~;) /ms 3 eovnponcnts.

l’R00l*. By using the method in Section 4.1, we construct K(WS2) from WS2 in

Figure -1.5 and count its components.
U

,1.
.;’ '\

FICURE 4,5. A link K(WS2)correspondingto I/VS2

.t d.
PR.0POSI'1‘i()N 4.2.4. Let WS,, be an n-wheel-sun?ower and K(WSn) be z s correspon mg

zm/iv. T/I,(3’!I,1X'(l/VS11.)is <1 3-link if n is eve" Otherwise ll I‘ “ Mink"
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PROOF. By induction on n. If n = 2 we have L(K(WS2)),which is a 3-link by
Lennna 4.2.3. Assume it is true for n = 2m — 1 and 2m for some m > 1' NOW consider

n I 2m + 1 and 2m + 2. Assume that each diagram in Figure 4.6 represents the number

L of the link corresponding to the diagram. If we start with a d-wheel-sun?ower then by

applying Propositions /1.1."/(2').4.1."/(ii) and 4.1.5(iii)accordingly,we get a (d — 1)-wheel-
sunflower with a missing spoke.

9
l

/‘
' /C \.

\

-

" '0TX?

I

sob
/.
\

FIGURE 4.6. Computation of L(K(WSd))

ll <1 1 ‘Z/11+ I then by Proposition 4.2.2(ii), it is a 2-link. Similarly, if d = 2m then by

Proposition Al.2.2(i).it is a 3-link. Therefore. by induction the proposition holds. I]

l’1"op<>si1ion 4.2.5 on wlieels is given by Mphako [15]and we will need it to prove Proposi-

tion »l.2.(5.

PR()P(>s1'1'1()r\' -1.2.5. Lat W” \ {(1.11'}be an n-wheel with a missing spoke {a, x}, where 1: is

/he (Tl'II/'!'(l/ up-,~/,._,. (,f\1i',,.(1mH\'(W,,\{a,.r})be its correspondinglink. Then K(W,l\{a,r})

/s u. ‘.Z~///1.1;.

lleeall lroiii (‘lmptei' 2. Seetion 2.3. that:

(i) /\n :1-\\'l1<~<*lH], with a petal {{a,c},{Qbll Such that {W5}E Ell/V")and C g V(W")

is rlenolerl by ll], U {{(i,C}.{Qblli

(ii) An 11-wln-el-sunllower WS.,, with a missing p

H11,rt},{(',b}} Figure /1.7.

etal {{a,c},{c,b}}is denoted by WS,L\

PR()l’()Sl'|‘l()N -/1.2.6. Let I/V.”U {{Il,6}»lC»bllbe a" "Wheel with a petal {{a’c}’{c’b}}’

{ be its correspondinglink. Then
such I,/ml, {u.,b} is <1 rim edge and K(Wn U {{a»C}>C’

K(l/V2,,U {{(1.,1:},{(:, is a 2-link
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C

v Yv$5

FIGURE 4.7. W" U {{a,c},{c,b}}and WS,, \ {{a,c},{c,b}}

PROOF. By induction on n. If n = 2 then K(W2U {{a,c},{c, is the link 6%from

the table of knots in the Appendix, hence it has two components. Assume it is true for

n = 2m — 1 and 2m for some m > 1. Then consider n = 2m +1 and n = 2m + 2.

Then we trace the rim edge {a,b} on an n-wheel such that {{a,c},{c,b}}is a petal.

Thus by applying Proposition 4.1.5(v) on an edge{(1,b} in W” U {{a,c},{c,b}},we have

Eqiizition /1.2.1 froni Figiire~1.8:

L(]\’(ll'/InU{{”@C}~{Cibl})): L(K(l’VnU{{a>c}i{cib}l’\{avb}))

(A1-‘Z-1) + LIKIWHU{{a,¢}1{@ib}}/{aib}))-

C
L

/ 3 »

AA I

FIGURE 4.8. Computation of L(K(WnU {ia»cl>{c»b}l))

But, (Wu U {{,,y‘(;},{Ca(,}})\ {(1,b} is an (n + 1)-wheelwith a missing spoke {c,r}, which

. P -

we deiiote as H/'(,,,1) \ {c, and we can easily COIHPUWL(K(W("+1)\ {c’$}))by mpo

- 1 I
'

sitioii 4.2.5. Furtlierniore L(K(W1lU iiaicli {Qbll/Ia» can be Slmph?ed by de etmg

. . -- — 1 — h l 'th
the two pmallcl pairs of edges by Proposition 4.1.7(z2).We thus get an (n ) w ee wi

11 missing spoke, which we denote as Wm-1)\ {aw3”}m the next equa Ion

L(1(((W" U {{a,C},{c,b}})/{(1,bill = L(K(W(n—1)\{a,~7/'})).
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By Proposition 4.2.5 wc can also compute L(K(W("_1)\ {a,z})). Thus by substituting
these back into Equation 4.2.1 we get:

MK (W11U {{@»c},{c,b}})> = L(K(W(,,+1)\{c,x}))+L(K(W(n_1)
\{a,;1;})).L95 W(1l+-1)\ {Q be a id + 1)-Wheelwith a missing spoke and W(d_1)\ {a,:c} be

Q9 WEI
— 1)-wheel with a missing spoke. Then by Proposition 4.2.5 we know that

Li (ll/(d+1)\ = L(K(W(d-1)\ {a,I1:})).Hence L(K(WdU {{a,c},{c,b}}))=
L(K(W((1<2)U {{(l=Cl,{C7 Thus for d = 2m +1 and 2m + 2 we have:

L(K(W<1~»+1>U {{<1»@}={@1b}l))= L(K(W(2m-1)U {{a,c},{c,b}})),

L(K(W(2m+2>U {{a=Ch icibllll = L(K(W(2m)U {{¢1,¢},{Qb}}))-
T hereforc, by induction the proposition holds. [1

4.2.1. Component numbers of links associated with F".
In this sub-s<\<'tion we are going to introduce a class of n-fan-sun?ower graphs as

one of the \'zu‘iz1lions of an n-wheel~sun?ower and then determine the component num-

ber of zniy link whose associated graph is in this class. We are going to denote an

n-fun-sun?ower graph by F,,.

An 22-flm-siin?ower F,, is obtained by deleting one ”outer” trianlge from an n-whee1-

siiii?ower" ll'S,,. Figure 4.9 is an example of F6.

FIGURE 4.9. A 6-fan-sun?ower F6

LEMMA 4.2.7. 1\'(F;;) has one component.

PR()01<‘. By using the method in Section 4.1, we construct K(F3l from F3 in Flgure 4-10

_ Eland count the number of con1p0n0I1tb-

PROP()S]’1‘l()N4,23, Let F,, be an n-fan-sun?ower and K (Fn) be its associated link. Then

K(Fn) is a 2-[wink ifn is even where Tl Z 2~ And If" is Odd where n 2 3 than K(F") is a

knot.
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FIGURE 4.10. F3 and its correspondingLink K(F3)

PROOF. By induction on n. If n = 2, then K(F2) is a link 5%which has two components
from the table of knots in the Appendix. Furthermore, if n = 3 then K (F3) has one

component from Lemma 4.2.7. Therefore, the proposition is true for n = 2, 3. Assume it

is true for n : 2m — 1 and 2m for some m > 1. Then we are going to show that it is also

true for 11. = 2m + 1 and 2m + 2. We start with a d-fan-sun?ower,D say, and increase it

to a ((1+ '2)-fzui-sun?ower. Assume that each diagram in the ?gure represents the number

L(1\'(F,,)) of the diagram. Thus by applying Propositions 4.1.7(2'),4.1.7(z'z')and 4.1.5(z'ii)

zicc<>i‘<lii1gl_\'.we get Figure 4.11.

k k
‘ 1

h
n

FIGURE 4.11. Computation of L(K(F<1))

H¢11<¢@L(1\'(1<‘(H2)))= [,(K(Fd)). Thus substituting (d+ 2) by Tl We have the following

equations:

L(K(F(2m+1)))= L(K(F(21n—1)))1

r(1<(F<2...+2>))= L(K(F<2m>)l~

_ . ElTherefore,the proposition holds by 1ndL1Ctl0I1-
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PROPOSITION 4'2'9~ Let WSn\{{l1>Cl,{C7bl} be an n-wheel-sun?owerwith a missing Petal
{{(l>(?l={I/5bl} and K(WS7L\ {till}, {(3, be its correspondinglink. Then K(WSn\
{{(L.0},{e,b}}) '/is a 2-link ifn is even. Otherwise it 1'5 a knot.

PROOF. We use induction on n. For n = 2, then WS; \ {{a.c}_{c_b}}is a 2-whe@1

with one petal Ill/32U {{a,c}, {c, Hence by Proposition 4.2.6, we know that K(W2 U

{{a.,r:},{e. b}}) is a 2-link. Assume it is also true for n = 2m — 1.2m for some m > 1.

Now consider n = 2m + 1, 2m + 2. We are going to start with an n-Wheel-sun?ower with a

missing petal. IVS” \ {{n,e}, {e, and trace the rim edge {(1,b} without a petal. Thus

by applying Proposition 4.1.5(’u)we have Equation 4.2.2 from Figure 4.12:

L(]\'(ll"SH \ {{a=Cli{cv Z \ {{a>C}={cv \ {ai

(4923) + L(K((W5~\{{<1=@}r{¢=l>}})/{<1,b}))~

Tlius (ll'.%',, \ {{u.<'}. {(-.b}})\ {(1,1)}is an n-fan-sun?ower, F", so we can compute

h/‘Z//. b 3

'~‘,/’ a

“?g ‘<
I<‘1u\=|n<: ~1.12. Coinputation of L(K(WSd\ {{a,c},{c,b}}YVQVA

*
1

Agé‘
L(I\'(F,,)) by l’)I'()})0Sil.l()I14.2.8. However L(K((WS,,\{{a,c},{¢,b}})/{<1.b}))can be

-\‘llll[)llll('(ll>_\¢<le1eting the parallel pair of edges using Proposition 4.1."/(ti). We thus get

H11 (I1. l)—\\'llt‘<‘l—Sll1lIlU\\'(‘1'with a missing spoke, WS(,,_1)\ {a>$l-Hence L(K((WSn\

{{(1_(-}_{(-_1,}})/{(,A_(,}))I L([((H/'S(.,,p,1)\ {n,:1;}))And we can compute L(K(WS(n_1)\

{,,p7_.I.}))by I>mpUh.mOn _1’2,g_ Thug by substituting these back into the Equation 4.2.2

and let ting ll’S,, \ {{u.,0},{Qb} be at (1-wlieel-sun?owerwith a missing petal we get Equa-

tion 4.2.3:

(.1.2.;n L<1;<n's,,\{{@,@},{@,b}}))= L(1<(F..))+L(K(W5i~-1)\{<w}>>-

.

' ' K WS
But] W, know “mt LU‘-(Fd))2 L(]t (F(d+2))),from Proposition 4.2.8. Hence L( ( d\

ll", 6}»{<5blll = L(1\'(l*VS(<1_2)\ {{a'7C}7I9» Thus for d 2m+1an m We
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PROPOSITION 42'9" Let WS~\{{a,C},{C75}}be an n-wheel-sun?owerwith o missing Petal
{{ll,(*},{(5,5}} and K(H/Sn \ {{a>C}={C.,b}})be its correspondinglink. Then K(WS'" \
{{o,0}.{(1,b}}) is a 2-link ifn is even. Otherwise @115a knot,

PROOF. We use induction on n. For n = 2, then WS2 \ {{a,c},{@,b}}is 3 2-Wh@@1

with Om‘ I><‘I‘(11II’/'2U {{@,C},{(3, Hence by Proposition4.2.6, we know that K(W2 U

{{a.(:}.{(7.b}}) is a 2-link. Assume it is also true for n = 2m —1,2m for some m > 1.

Now consider n = 2m + 1. 2m + 2. We are going to start with an n-wheel-sun?ower with at

missing petal. IVS” \ {{a,c},{c. and trace the rim edge {a,b} without a petal. Thus

by supplying Propositiion 4.I.5(’o) we have Equation 4.2.2 from Figure 4.12:

L(1\’(H/VS"\ {{a=C}-{cv 2 \ {{a>C}={C1 \ {av

(4-2-2) + L(K((W5r»\{{<1»@}»{@=b}})/{<1=b}))-

Tiius (H'.S',, \ {{11.(.'}.{('.b}})\ {u.b} is an n-fan-sun?ower, F", so we can compute

A
Y

.

1

v
VA
~
9 >2149;?‘

_ /
‘I Z

g

Fl(;liIil<: ~I.l2. Coniputation of L(K(WSd \ {{a,0}, {C,b}}

L(1\'(F,,)) l>_\'Propositioii 4.2.8. However L(K((WS,.\ {{(1,f3}>{C»b}})/{ai can be

siiiiplified by <lel<~t.i1ig'the ])&Ll‘?II(‘Ipair of edges using Proposition 4.1.7(z'z').We thus get

an (ii I I)—\\‘II<‘<‘I-S111lII()\\'(‘l‘with 21 missing spoke, WS(,,_i)\ {W13}Hence L(K((WS~\

{{,,_(-}_{,._g,}})/{(,_1,}))I L(]((WS(,,?1)\{o,;zr}))And we can compute L(K(WS(,_,_1)\

{<i,.r}))by l>1-<>])@,\~i1,ioi1v1.2.2. Thus by substituting these back into the Equation 4.2.2

znui I(\t.[,i11gH'5(,\ {{<1,c},{(‘,b} be at ri-wheel-sun?ower with at missing petal we get Equa~

tion 1.2.3:

<m> L(1\'(WS.1\{{~~<*}.{<r.b}}))= L<1<<F..>>+ L(K(W5<~_1>\{a.w}))-

.

" " WS
B111,W0 know t,1m,t_ L(1\'(_Fd))= L(1\(F(,,+2))),from Proposition 4.2.8. Hence L(K( d\

= d = 2 2
{{11.<1-}.{<:.n>>: L(I\'(W$(<z_2)\{{r1,C},{@»b}))-Thus for d 2"*+1a“d ’"““ We
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L(K(I/VS(2m+1)\ {{a»C}>{Q = L(K(WS(2m)\ {{fl,C},{C>b}))»

L(K(W5<2~»+2>\ {{¢1>C},{Qb})) = L(K(WS(2m+1)\ {{a,c},{<1,b}))~

Therefore. the proposition holds for any n. El
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Conclusion

This thesis discusses a new class of graphs called wheel-sun?owers. The Tlitte polynomials

of wheel-sunflowers and their applications have also been considered. We now review the

results obtained and give some suggestions for future research.

Chapter two gives the definition of wheel-sunflower graphs, their properties and charac-

terizations of the cycle matroid M (WSn) of an n-wheel-sun?ower. The characterizations

are used to compute the T utte polynomialof M (WSH)from Tutte polynomials of general-

ized parallel connections lt would be interesting though to ?nd the explicit expression

for Tntte polynoinials of \vheel-sun?owers. Such an expression may be useful to evaluate

reliability of in/Leel-sun?ower‘ networks in random graph theory.

Chapter three applies the theory of Tlitte polynomials to prove T-uniqueness of wheel-

sunflowers. \\'e have proved that for n Z 4, W5" is T-unique. The proof mimicks the

proof of ’1‘-uniqueness of graphs such as wheels. T -unique graphs and matroids have re-

ceived nnieh attention [11, 12, 13]. It could be more interesting to consider T-uniqueness

of wheel-sun?owers using other polynomials such as the chromatic polynomial and the

mateliing polynomial.

Chapter four also applies the theory of ’I\itte polynomialsto classify links associated

with Wheel-sturllowers and their variations. In this chapter, we have proved that the link

K(WS,,)eorespontling to an n-wheel-sunflower is a 3-link if n is even. Otherwise K (WSH)

is a 2-link. We have also shown how these links change with removal Of Certain edges in

W5“. For example, by removing one “outer” triangle from W-5'",We Obtain 9» gY&Phwhich

we have called an in-Fan-sun?ower, Fw Th‘? link Kl-F»)Correspondingto F" is a wink

if n is even. Otherwise K(F,,) is a knot. It would be interesting to Consider k'SumS of

wheel-sunflowers and their corresponding links.
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