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Dedication
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Abstract

We define a graph and call it a wheel-sunflower graph considered as one of the compartibility

graphs that may arise in computer-based network information systems.

Then we study characterizations that permit us to compute Tutte polynomials of wheel-
sunflowers using Tutte polynomials of generalized parallel connections. As one of the
applications of Tutte polynomials, we characterize wheel-sunflowers by numerical invariants
and deduce their T-uniqueness - that is, graphs determined up to isomorphism by their

Tutte polynomials.

We also apply the theory of Tutte polynomials to determine the component numbers of
links corresponding to wheel-sunflower graphs and show how these numbers change by

removing certain edges.
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CHAPTER 1

Introduction

Some of the research problems in matroid theory involve finding formulas that reduce com-
putations of the Tutte polynomials of matroids to simpler computations [3] and searching
matroids that are determined by their Tutte polynomials [11, 12, 13]. Some other research
problems involve applying the theory of Tutte polynomials in other fields. For example, in
knot theory, Tutte polynomials are used to classify knots and links associated with planar

graphs [15].

This thesis focuses precisely on the issues above. First we are going to introduce a new
class of graphs called wheel-sunflower graphs and then compute their Tutte polynomials.
Such type of graphs may arise in network information systems and parameters encoded
in their Tutte polynomials may be used to solve some of the many problems that arise in
them. One such problem is that of network reliability [8]. The second issue is that we are
going to establish that wheel-sunflower graphs can be completely determined from their
Tutte polynomials. Graphs with such a property are called T-unique. T-uniqueness is one
of the applications of Tutte polynomials. Lastly we are going to apply the theory of Tutte
polynomials to classify links whose associated graphs are wheel-sunflowers and variations

of wheel-sunflowers.

1.1. Overview of thesis

The structure of this thesis is as follows. In Chapter 2. we introduce and define a wheel-
sunflower graph. Then we give characterizations that enable us to use Tutte polynomials

of generalized parallel connections to compute Tutte polynomials of wheel-sunflowers. In

Chapter 3, we give several parameters of wheel-sunflowers like the number of cycles of

lengths 3,4 and 5, that can be determined from the Tutte polynomial. These parameters
are used to prove T-uniqueness of wheel-sunflowers. Chapter 4 focuses on one of the

applications of Tutte polynomials. It gives component numbers of links whose associated

1




1.2. BASIC DEFINITIONS 2

oraphs are wheel-sunflowers. Furthermore it gives results on how the component numbers

of links change on the removal of certain edges in a wheel-sunflower graph.

In some sections of this thesis we give new results unless otherwise stated. Namely, the def-
inition of a wheel-sunflower in Section 2.1; properties of wheel-sunflowers in Sections 2R8I
and 3.2; T-uniqueness of wheel-sunflowers in Sections 3.3 and 3.2; component numbers
of links associated with wheel-sunflowers in Section 4.2; and component number of links

corresponding to a graph called a fan-sunflower graph in Section 4.2.1.

Most of the work in Chapter 2 is not new. For instance in Section 2.1.2 we review the
definitions of modular flats and Mobius functions [3, 6] and we apply these definitions to
wheel-sunflowers. In Section 2.2 we review different formulas of the characteristic polyno-
mial, Tutte polynomial and the weighted characteristic polynomial as given by Bonin and
de Mier [3]. The relationships of these formulas are used to work out the Tutte polynomials

of generalized parallel connections.

The work in Sections 2.3.2 and 2.3.3 is entirely found in [3]. We have only shown the
characterizations that will enable us to use the same on the cycle matroid of an n-wheel-

sunflower.

Most of the work in Chapter 3 corresponds to routine proofs of results on 7-uniqueness of
graphs found in [12]. In the last chapter, Chapter 4, Section 4.1 reviews constructions of

links from planar graphs. Then we apply this to wheel-sunflower graphs.

1.2. Basic definitions

This section is devoted to reviewing the basic terminology, notation and operations of

graph theory, matroid theory and knot theory that have been used in this thesis.

1.2.1. Graph theory.
We review the notation used and definitions that appear frequently in this thesis.

For all undefined notations we refer to any introductory book such as [20].

A graph G is a triple consisting of a vertez set V(G), an edge set E(G) and a relation
that associates with each edge two vertices, not necessarily distinct, called its endpoints.
If there is no confusion, we write V(G) and E(G) as V and E respectively. An edge of

G with endpoints v and w is denoted by {v,w}. In this thesis we study graphs without
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isolated vertices, but possibly with loops. An isolated vertex is a vertex of degree 0 and a

loop is an edge whose endpoints are equal.

A graph G is connected if each pair of vertices in G belongs to a path; otherwise G is
disconnected. A path from a vertex v to a vertex u is a sequence of distinct alternating
vertices and edges, vy,e1,vs, €2, ,€k—1,Vk, Such that v; = v, v = u and for all 7 =
1,2,--- ,k — 1, e; is incident with v; and vt1. The connectivity k(G) of connected graph
G is the smallest number of vertices whose removal disconnects G. When k(G) > 2, the

graph is said to be 2-connected.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G) and
the assignment of endpoints to edges in H is the same as in G. An induced subgraph is a
subgraph obtained by deleting a set of vertices. If G is a graph and A C V(G) we denote
by G|A the subgraph of G induced by A.

For every subset A C E, its rank is r(A4) =n — k(G|A), where n = |V (A)| and k(G|A) is
the number of connected components of G|A. We write r(G) instead of r(E). The nullity
of an edge-set is n(A) = |A| — r(A).

A cycle of length n is called an n—cycle and denoted by Cy; for n = 3,4, 5 we also refer to
them as triangles, squares and pentagons respectively. The minimum 7 such that G has an
n—cycle is called the girth of G denoted by g(G). A chord of a cycle C'is an edge joining
two non consecutive vertices of C. A graph with no cycle is acyclic. A forest is an acyclic
graph.

A graph G is planar if it can be drawn in the plane in such a away that no two edges meet
cach other except at a vertex to which they are both incident. Any such drawing is called

a plane drawing of G. Wheel-sunflower graphs to be studied in this thesis are planar.

1.2.2. Matroid theory.
In this section we review the basic definitions and notation used in this thesis for
matroids. We refer to Oxley’s book [17] for further details and proofs of the results in this
section. Matroids can be defined in several ways. In this thesis we define them in terms

of independent sets.

A matroid is a pair (E,Z) where E is a finite set and Z is a collection of subsets of £

satisfying the following properties:
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(I) Vel
(I2) ¥IeZandI'"C I, then I' e 7.
(I3) If I,I' € T and |I'| < ||, then there exists an clement € I — I guch that 'Uz € 1.

The set E is called the ground set of M, and the sets in T are the independent sets. We

give an example of a matroid.

ExAMPLE 1.2.1. Let G = (V, E) be a graph and let A be the set of acyclic subsets of E.
Then (E, A) is a matroid denoted by M(G). We call M(G) the cycle matroid of G.

An isomorphism between matroids M and N is a bijection ¢ : E(M) — E(N) such that
for each subset I C E(M), I is independent in M if and only if ¢(I) is independent in
N. The subsets of the ground set that are not independent are called dependent; minimal
dependent sets are circuits and maximal independent sets are bases. For a graph G, the
girth of a cycle matroid M = M(G) is the number of elements of its smallest circuit, and
it is denoted by g(M). An element z such that {2} is a circuit is called a loop; hence loops
are in no basis. If an element belongs to every basis then it is called a coloop. 1If a set

contains a basis, it is called spanning.

For any set X C E, the rank of X is the size of the largest independent set in X, and
is denoted by r(X) and the nullity of X is n(X) = 1X| = r(X). If r({z}) = 7({y}) =

r({z,y}) = 1, we say that the elements z and y are parallel.

A matroid invariant is a function f defined on matroids M and N such that f(M) = f(N)
whenever M and N are isomorphic. For instance, the rank, the number of bases, and the

girth are matroid invariants.

Given two matroids M; and M, with disjoint ground sets, E; and Es, the matroid M @ M,
has as ground set By U E; and as independent sets Z(M; & M) = {(LUL: L € I(M), > €
I(Ms,)}. Such a matroid M; & M, is called the direct sum of My and M. Aset X C E is
called a flatif r(XUe) =r(X)+1foralle ¢ X. The closure of aset X C E is the smallest
flat containing X. Furthermore, if there is a set of flats {Xo, X1, -+, X;} of a matroid M
such that, for i € {0,1,2,--- ,r},7(X;) = ¢ and for i € {1,2,---,7}, X@u-1) € X, then
{Xo, X1, -+, Xr} I8 called a saturated chain of flats of M. Given two matroids M; and My
with a common flat N on the ground sets, E, and E; respectively, the matroid Py (M, M)

on the ground set £, U E, is called the generalized parallel connection of M and M.




w
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Definitions 1.2.2 and 1.2.3 are used to compute Tutte polynomials of matroids using gen-

eralized parallel connections.
DEFINITION 1.2.2. A relation ” <” is a partial order on a set X if it has:

(i) reflexivity (z < @ for all z € X),
(ii) antisymmetry (z <y and y < z implies that z = Y),

(iil) transitivity (¢ <y and y < z implies that z < )

DEFINITION 1.2.3. Boolean algebra B, is the partial order on subsets defined by inclusion
C - that is, the Boolean algebra B,,, has elements as all subsets of a set {1,2,---,n} and
C as an order relation.

Sets with a partial order and an order relation are called partially ordered sets (posets).

So the Boolean algebra is an example of a poset.

1.2.3. The Tutte polynomial.
In this section we give the definition of Tutte polynomial and outline some of the
basic operations that are used to compute the Tutte polynomial of a matroid. We also
include the definitions of T-equivalent and T-uniqueness. The former is used to define
graphs with same Tutte polynomial while the later is used to define a graph G such that
for all graphs H, that are T-equivalent to G are also isomorphic to G. For a thorough

introduction we refer to [8, 10, 12, 13].

Much as the Tutte polynomial is defined in several ways, we are going to use the following
definition in this thesis. The Tutte polynomial of a matroid M with ground set E is defined

as: t(M;z,y) = D ack( 1)r M)A (y — 1)l41-r(4)

The Tutte polynomial of a matroid is naturally extended to a graph G as HG;3,9) =
Yoace(® —~ 1)ME)-rld) (g — 1)lA1=7(4) Some of the basic operations that are used to compute
the Tutte polynomial are deletion and contraction. The deletion M\e is the matroid on
E — e having as independent sets I(M\e) ={I: I €I(M),e & I}. The contraction of an
edge e with end points u and v denoted by M(G/e) from the cycle matroid of G, is the
replacement of u and v with a single vertex whose incident edges are the edges other than
e that were incident to v and v and the resulting cycle matroid M(G/e) has one edge less
than M(G). The Tutte polynomial of a cycle matroid M = M(G) can be computed by

applying the following operations recursively:
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(i) fE= @, then t(M; z,y) = 1;
(ii) If e is a coloop, then ¢t(M;z,y) =z t(M/e;2,y);

(iii) If e is a loop, then ¢(M;z,y) =y t(M\e;z,y);
(iv) If e is neither a coloop nor a loop, then t(M;z,y) = t(M\e; z,y) + t(M/e;,y).

We say that two graphs G and G are T-equivalent if they have the same Tutte polynomial.
Furthermore, a graph G is T-unique if any other graph having the same Tutte polynomial
as G is necessarily isomorphic to G. Several well known families of graphs such as wheels,
squares of cycles, complete multipartite graphs, ladders, Mébius ladders and hypercubes

are known to be T-unique [11].

1.2.4. Knot theory.
In this section we summarize the knot theory used in this thesis. We give the ba-
sic definitions, notations and some of the operations on knots and links. We refer to

Adam’s book [1] and Murasugi’s paper [16] for a thorough introduction to the subject.

A knot is a simple closed polygon in three dimensional space and it has a finite number
of vertices and edges. In the plane a knot is shown as a two dimensional figure with
self crossings known as the knot diagram. The knot diagram which does not give any
information about the type of crossing points and orientation is called a knot universe.
A knot diagram which is composed of one component is referred to as a knot and if it is

composed of more than one component it is called a link diagram.

Link diagrams can be of two types: oriented and unoriented. An oriented link diagram
consists of directed lines while an unoriented link diagram has no directed lines. We refer
the reader to [1] for a nice introduction to the subject. In this thesis we have considered
the case of unoriented link diagrams which correspond to wheel-sunflower graphs and their
variations. We are going to call the lines of unoriented link diagrams as components of a
link. For such an unoriented link diagram K(G), that corresponds to a planar graph G,

its linking number L(K(G)) is determined by applying the theory of Tutte polynomials.




CHAPTER 2

Tutte polynomials of wheel-sunflowers

In this chapter we are going to study the characterizations of wheel-sunflowers that will
enable us to compute the Tutte polynomials of wheel-sunflowers using Tutte polynomials

of generalized parallel connections found in [8]:

2.1. The wheel-sunflower graph

This section introduces wheel-sunflower graphs and gives the formal definition of wheel-
sunflower graphs. Then we study some of the properties of wheel-sunflowers with regard

to their edges, modular flats and computation of the mobius function.

The join of simple graphs G and H, written GV H, is the graph obtained from the disjoint
union G+ H by adding the edges {{u,v} : u € V(G),v € V(H)}. For instance, an n-wheel
graph W, is the join of a cycle graph C,, and a complete graph K, placed at the ” middle”
of C,. We write W, = K1 V Cy. Edges from C,, are called rim edges of W,, and the edges

added are called spokes. A middle vertex is called a hub [15].

The n-wheel-sunflower graph denoted by WS, is built on an n-wheel graph, for n > 2,
by adding n ”outer” triangles according to the following rule: One edge from each of the
”outer” triangles together with its endpoints are identified from the rim edges of an n-wheel

W,,. Definition 2.1.1 gives the formal definition of an n-wheel-sunflower.

DEFINITION 2.1.1. Let F be a group of integers modulo n and W,, = C, V K;. Then for

n > 2, an n-wheel-sunflower denoted by WS, is a graph with:
V(WS,) =V(CaV K)u{b:ieF; b ¢ W}

EWS,) = E(C,V Ki) U {{bi,ai}, {bi,ais1} i €F; a; € V(Cyp); b & Wi}

An edge set of the form {{ai, bi}, {bi, a1} i € F, a; € V(Cy), bi & Wy} is called a petal,
and any ”outer” vertex b; ¢ W, is called an apex of an n-wheel-sunflower. Essentially

then, the number of petal edges added to an n-wheel-sunflower is 2n since each of the n

T
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vertices from the rim is joined to two additional edges with a common vertex. Figure 2.1

is an example of a 6-wheel-sunflower.

FIGURE 2.1. A 6-wheel-sunflower graph

A wheel-sunflower graph can be regarded as one of the compartibility graph. A com-
partibility graph is a graph in which vertices represent objects being arranged, and edges
correspond to those pairs of objects which are compartible in some way [21]. For instance
wheel-sunflower graphs can arise in computer-based network information systems in which
vertices from the rim correspond to computers that communicate in a ring and directly
to one large central server computer that coresponds to the hub. The apex can represent
smaller server computers for back-up information from an adjacent pair of computers cor-
responding to adjacent pairs of vertices from the rim. All edges in these cases represent

communication lines.

2.1.1. Edges of an n-wheel-sunflower.
In this section we are going to study some properties that are immediate from the
vertex set V(WS,) and edge set E(WS,) of wheel-sunflower graphs. We start by
presenting Lemma 2.1.2 which will be use to prove Proposition 2.1.3 on the number of

edges in an n-wheel-sunflower.

LEMMA 2.1.2. Let WS, be an n-wheel-sunflower. Then |E(W Sni1))| = |E(WSa)| + 4.

PROOF. From Definition 2.1.1, to construct an (n + 1)-wheel-sunflower WS, 1), from
WS, we add the following four edges to E(WS,) : one rim edge, one spoke and two petal

edges. O

PROPOSITION 2.1.3. Let WS, be an n-wheel-sunflower. Then |[E(W S,)| = 4n.

S S —p
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PROOF. By using induction on n. For n = 2, we get WS> which has 4 petal edges,
2 rim edges which are parallel and 2 spokes, making a total of 8 edges. Assume that
the proposition holds for n = k where n > 2. Then |E(W Sk)| = 4k. Consider the case
n = k + 1. Then by Lemma 2.1.2, we get |E(W Sg41))| = |E(W Sk)| + 4. By the induction
hypothesis we have: |E(WS(y1))| = 4k +4 = 4(k + 1). Hence the proposition holds for

any n. O

2.1.2. Modular flats.
In this section we summarize key results about modular flats which are used in

Proposition 2.1.7. We start by reviewing the following definitions found in [17].

Let M = M(G) where G is a graph. If G is connected, then the rank r(M) of a matroid
M is given by 7(M) = |V(G)| — 1. This can be extended as follows. If G has w(G)
connected components, then r(M) = |V(G)| — w(G). It follows that if X € E(G), then
r(X) = [V(GIXD)| - w(GIX]).

EXAMPLE 2.1.4. From the definition of an n-wheel-sunflower WS, in Section 2.1 we have

r(M(WS,)) = |V(WS,)| —1=2n.

Recall, from Section 1.2, that a set X C E is a flat if 7(X Ue) = 7(X) + 1 for all
e & X. Flats of ranks 1,2, 3, and r(M) — 1 are called points, lines, planes and hyperplanes
respectively. The following definition of a modular flat in a matroid and its justification

are found in [6, 9].

DEFINITION 2.1.5. A flat A of a matroid M is modular if for each flat X of M, we have
r(A) +r(X) =r(AUX) +r(ANX).

In this thesis we are going to use Theorem 2.1.6 found in [6], to prove Proposition 2.1.7.

THEOREM 2.1.6. Let M be a matroid with its rank as r(M) and the rank of the flat A of
M is k. Then A is modular if and only if A intersects every flat of rank r(M) — k+ 1 mn
a flat of positive rank. In particular, a hyperplane H of M is modular if and only if H

intersects every line of M in a flat of positive rank.

PROPOSITION 2.1.7. Let Wy, be an n-wheel in an n-wheel-sunflower W S,,. Then M(W,,) is

a rank-n modular flat in M(WSy).
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PROOF. From the definition of an n-wheel-sunflower W S,,, we have: T(AI(WS,L)) =
|V(WS,)| — 1 = 2n. Hence M(WS,,) is a rank-2n matroid. Furthermore, r(M(W,)) =
|V(W,)| =1 = n. To use Theorem 2.1.6 here we let k& = n. Then we need to show that
M (W,) intersects every flat of rank 2n—n+11in a flat of positive rank; that is rank-(n+1)
flats. So let X be a flat of rank n + 1 in M(WS,,). All rank-(n + 1) flats in M(WS,,) have
at least one edge from E(WS,) which is either a spoke or a rim edge. Spokes and rim
edges are edges of an n-wheel W, Therefore the intersection W, N X contains at least a
spoke or a rim edge. Spokes and rim edges are rank-1 flats in G,. Hence r(WonX) =1

as required. O

2.1.3. Mobius function.
In this section we give a brief guide, to the reader, on one of the invariants that
can be obtained from the Tutte polynomial called the Mobius function. We summarize
ideas on how the M&bius function denoted by p is defined on a set. For a thorough review

and basic properties of Mobius functions, we refer to [6, 23].

Recall Definition 1.2.3 and the meaning of a poset from Section 1.2.2 which we use now.

DEFINITION 2.1.8. Let P be a poset whose intervals are finite and Int(P) be set of its
intervals. The Mobius function, p : Int(P) — 2, is defined recursively by
1 it =1,

u(z,y) =
=Y p(z,z), fz<y.

In Example 2.1.9 we explain how to compute w(®, F), where F is a flat of a matroid M.
We will need this to compute the Tutte polynomial of the cycle matroid M(WS,,) of an

n-wheel-sunflower using generalized parallel connection.

EXAMPLE 2.1.9. A rank-n wheel W, consists of edges which can be ordered in the following
manner {1,2,3,---,2n}; see Figure 2.2. And then by defining the Boolean algebra, Bay, of
the set {1,2,---,2n} and C as an order relation, we can evaluate u(0, F) where F € Bap.

F| is the cardinality of F [3, 23]. For

It is already known that u(0, F) = (=1)IF!] where

example, from Figure 2.2:

(i) All the six triangles are rank-2 flats of cardinality 3. Therefore their corresponding

Mébius function is (—=1)% = =1;
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(ii) All the six cycles of length five with two chords with a common vertex are rank-4
flats of cardinality 7. Therefore their corresponding Mobius function is (=1)F = -1;
(iii) A 6-wheel itself is a rank-6 flat of cardinality 12. Therefore its corresponding Mobius

function is (—1)2 = 1.

FIGURE 2.2. A 6-wheel

2.2. Tutte and weighted characteristic polynomials

In this section we review formulations of the Tutte polynomial and the characteristic poly-
nomial as found in [3]. Recall the definition of the Tutte polynomial from Section 1.2.3.
The Tutte polynomial ¢(M;z,y) of a matroid M on the set E is given by:

(2.2.1) (Miz,y) = O (x0T (g — 1)lAmr),

ACE

The characteristic polynomial x(M; X) of M is, up to sign, a special evaluation of the Tutte
polynomial of M : x(M;\) = (=1)"™M)¢(M;1 — A,0). The characteristic polynomial can
be formulated in a variety of ways. Equation 2.2.1 yields the following Boolean expression
of the characteristic polynomial. x(M,\) = ZAQE(—1)“4'/\"(‘”)_"('4). This is called the
Boolean expression, because (=1)!41 is an evaluation of Boolean algebra, B, using u(A)
where A € B,,. Hence the characteristic polynomial can also be expressed in the following
way: Y(M: ) = Xt 7 of a1 B0, F)N' M=) " where p is the Mobius function of M [23].
It follows from any of these formulas that Y(M; \) = 0 if M has loops. This is because one
of the properties of deletion-contraction recursion states that if e is a loop in a matroid M,
then t(M;z,y) =y t(M\e; z,y). And recall that y = 0 in the characteristic polynomial.
Thus according to Brylawski, for a contraction M/Z of M, the characteristic polynomial

x(M/Z; \) is nonzero only if Z is a flat of M [3]. Definition 2.2.1 is due to Brylawski (3].

DEFINITION 2.2.1. The weighted characteristic polynomial, ¥(M;z,y) of M in terms

of the characteristic polynomial of contractions of M by flats is given by Y(M;z,y) =

Zﬂats F of M IlFlX(A/[/F‘ Z/)




———
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The following well known formulas make precise the statement that the Tutte polynomial

t(M;z,y) and the weighted characteristic polynomial x(M;z,y) are equivalent [3]:

(2.2.2) HMsz,y) = XMy z=1y=-1)
' (y — 1)r(M) ’
il X(Miz,y) = (=100 L 4 13),

We illustrate this equivalence as follows. By simplifying the numerator ¥(M;y, (z —1)(y —
1)) of Equation 2.2.2 using Equation 2.2.3 we have:
% Tt - z—1)(y—1
WM =D -1) = -1y SN )
= (y-1MHM;z,y).

By substituting this result (y — 1)"®)¢(M;z,y) in Equation 2.2.2 we get t(M;z,y) as

required.

2.3. Generalized parallel connections

This section defines the cycle matroid of an n-wheel-sunflower W S,, using generalized
parallel connection. We are going to use the following assumptions for the matroids M;

and M, on the ground sets Ej, and E; respectively, found in (3]:

(G1) My|T = M,|T, where T = E; N Es;
(G2) clp, T is a modular flat of Mi; and
(G3) clp, T is a modular flat of M.

DEFINITION 2.3.1. Let N denote the common restriction M,|T = M,|T. The generalized
parallel connection of M; and M, at T is a matroid denoted as Py(M;, M) whose flats
are precisely the subsets A of £1 U E, such that AN Ey is a flat of M; and AN F, is a flat
of M.

Equivalently, the flats of Py(Mi, M,) are the subsets of Ey U E, of the form A; U A, where
A, and A, are flats of My and Mo, respectively, and 4, NT = A;NT [3]. We shall use this
second formulation of flats in Section 2.3.3. We can now give the definition of the cycle

matroid of wheel-sunflowers using generalized parallel connection as Proposition 2:8:2.
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Proposition 2.3.2 is required to apply the results of Tutte polynomials of generalized parallel
connection directly to the cycle matroid of an n-wheel-sunflower denoted as M(WS,). We

are going to identify the two constituent matroids of M (W S,) as depicted in Figure 2.3.

FIGURE 2.3. Constituent matroids of WS,

PROPOSITION 2.3.2. Let WS, \{{a,c}, {c,b}} be an n-wheel-sunflower with a missing petal
{{a,c}, {c,b}}, such that {a,b} is a rim edge and W, U {{a, c}, {c,b}} be an n-wheel with
a petal {{a,c},{c,b}}, such that {a,b} is the same rim edge as the first. Let M(W Sy \
{{a,c}, {c,b}}) and M(W, U {{a,c}, {c, b}}) be the two matroids on the ground sets E, =
EWS, \ {{a,c},{c,b}}) and E; = E(W, U {{a, c},{c,b}}) respectively. Then M(WS,)
is the generalized parallel connection Py(Mi, M) of My = MWS, \ {{a,c}, {c,b}}) and
M, = M(W, U {{a,c},{c,b}}).

PROOF. The intersection E(W S, \ {{a,c}, {c,b}}) N E(WrU {{a,c},{c,b}}) of Ey and
E, is an edge set E(W,) of an n-wheel. So let T = M(W,,). Then:

Il

MIT = MWS,\ {{a e}, {c,})IM(W,)
 MOVSA Harch (DD \ (B — EOV)
_ WS\ (o eh e (s b s P\ (el 001
= M(W,), i
MoT = M(WyU{er,e2})|M(Wa)
_ MW U {arch {6 BN\ (B2 — EOV)
_ MW, U {arch o B (areh, {6 B1)

= M(Wa,).
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Let e be an edge in E(WS,,). If e € E(W,), then e is one of the petal edges in either
EWS,\ {{a,c}, {c,b}}) or E(W,,U{{a,c},{c.,b}}). Furthermore r(W,Ue) = (W) + 1.
Hence M(W,) is a flat of both M; = M(WS, \ {{a,c},{c,b}}) and My = M(W, U
{{a,c} {c,b}}):

Lastly we need to show that M(W,) is a modular flat of M; = M(W S, \ {{a.c},{c.b}})
and My = M(W, U {{a,c},{c,b}}). M(W,,) intersects every rank-2 flat of My = M(W, U
{{a,c},{c,b}}). Therefore, by Theorem 2.1.6 M(W,) is a modular flat of M. And for
M, = M(W S \{{a,c}, {c,b}}), its rank r(M;) is calculated as follows: r(M;) = [V(W S, \
{{a,c},{c,b}})| = 1 = 2n — 1. Therefore by Theorem 2.1.6 we need to show that M(W,,)
intersects every flat of rank (2n — 1) —n+ 1 = n in a positive rank, which is M (W,,) itself.

So M(W,) is a modular flat of My = M(WS, \ {{a,c},{c,b}}). O

To apply the results of Tutte polynomials of generalized parallel connection we require
that M(W,) be a mazimal common restriction of both M(W S, \ {{a,c},{c,b}}) and
M(W, U {{a,c},{c,b}}). This is shown in Proposition 2.3.3.

PROPOSITION 2.3.3. M(W,) is the mazimal common restriction of M(WS, \

{{a,c}, {c,b}}) and M(W, U {{a,c}, {c,b}}).

PROOF. We use contradiction. Suppose that M(W,) is not maximal. Then there is
an e which is not in E(W,,) such that the intersection E(W Sy \ {{a,c},{c,b}})NEW, U
{{a,c},{c,b}}) has e as one of its elements. Since ¢ is not in E(W,,) then e must be a petal
edge. But from Proposition 2.1.3, the number of petal edges in E(W S, \ {{a,c}, {c,b}})
is 21 — 2 and number of petal edges in E(W, U{{a,c},{c,b}}) is 2. Therefore if e is in the
intersection then total number of petal edges in n-wheel-sunflower will be (2n—2)+2—1,
which simplifies to 2n — 1. This is a contradiction because the total number of petal edges

in an n-wheel-sunflower W.S,, is 2n. O

Throughout this chapter, when two matroids M; and M, are under consideration we are
going to denote their common restriction by N. But for the restriction to one matroid M

we are going to denote it by M|T"

2.3.1. Properties of generalized parallel connections.
Our results on the Tutte polynomials of wheel-sunflowers follow directly from Tutte

polynomials of generalized parallel connections. Hence the rest of this section focuses on
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properties of generalized parallel connections found in [3]. First we turn to the ranks of

flats in Py (M, M3).

Recall the meaning of the terms; rank, closure, flat and saturated chain of flats from
Section 1.2.2. The rank of a flat A of a matroid is perceived as the number of flats other
than closure cl(@) of an empty set in a saturated chain of flats from cl(#) to A [3]. Using
this perspective on rank together with the definition of the flats of Py (M, M,) it follows
that the rank of a flat Ay U Ay of Py(My, Ms), where A; and Aj are flats of M, and M,
respectively, with W = A, NT = A, N T, is given by Equation 2.3.1:

r(AUA) = (W) + (ran (A1) — (W) + (s (42) — 7 (W)

(2.3} = Tan(A1) + i (A2) —rn(W).

In particular if 4, = M(WS, \ {{a,c},{c,b}}) and Az = MW, U {{a,c},{c,b}}) then,
the rank of a matroid Py(M;, Ms) is given by Equation 2.3.2:

(232) T(PN(Afl, ]\/[2)) = T‘(Al U Ag) = 7"(]\/[1) - 'I"(]\/Ig) oy ’I“(N)

Notice that we can use equation 2.3.2 to calculate the rank of M(WSy). Example 2.3.4

illustrates this rank calculation on the cycle matroid of an n-wheel-sunflower.

EXAMPLE 2.3.4. Let M; = M(WS,, \ {{a,c},{c,b}}), where WSy \ {{a,c},{c,b}}) is an
-wheel-sunflower with a missing petal {{a,c}, {c,b}} and My = M(W;, U {{a,c}, {c, b}}),
where W, U {{a, c},{c,b}} is an n-wheel with a petal {{a,c},{c,b}}. Then by Proposi-
tion 2.3.3, the common restriction, N, of both M; and M, is the cycle matroid of an

n-wheel. Hence:

r(N) = V(W) =1

r(My) = [VIWSa\{{a,c}{c.b}})] -1
= 2n—1,

r(My) = [V(WaU{{a,c} {c,b}})]~1

= n+ 1.
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By substituting these in equation 2.3.2 we get

I(PN(AII,AIQ)) = T(A{I)“*—T(AfQ)—T(N)
—

(2.3.3)

r(M(WS.,)).

Proposition 2.3.5 is found in [3] and we will use it in Section 2.3.2.

PROPOSITION 2.3.5. Assume that My, M, are matroids on the ground sets Ey, Es, and that

conditions (G1)-(G3) on generalized parallel connections hold. Then the following property

holds: Py(My, My)/T = (My/T) @ (My/T).

2.3.2. Characteristic polynomial of Py(M;, M>).
Recall that by Proposition 2.3.2 we can define M(WS,,) as a generalized parallel connec-
tion Pn(My, My) of My = M(WS, \ {{a,c}, {c, b}}) and My = M(W, U {{a, c}, {c,b}}),
such that N = M;|T = My|T, where T = M(W,,) is the cycle matroid of an n-wheel, W,.
To apply the definition of the weighted characteristic polynomial to a generalized parallel
connection Py ((M;, M3) we need to know the characteristic polynomial of contractions of

Pyn(M;i, M) by flats. Lemma 2.3.6 given by Bonin in [3], addresses these contractions.

LEMMA 2.3.6. Assume that My, and My are matroids on the ground sets Ey, Es, and that
conditions (G1) — (G3) hold. For a flat F of Pn(My, M) with F'(0 Ey= A, FNE; = Ay,
and FNT = W, we have:

(23/1) PN(A[l,]\[‘g)/F - P}\r/w(]\fl/Al,]\'[2/442).

Turning to the characteristic polynomial, Proposition 2.3.5 and basic properties of the
characteristic polynomial give by Equation 9.3.5 [3):

X(Py(My, M)/T;A) = x((My/T) & (Ma/T)); A)
(2:35) = X(My/T; Nx(Ma/T; \).
The following theorem is given by Brylawski [3], and it gives the characteristic polynomial
of Pyx(My, Ms).

THEOREM 2.3.7. Assume that My, and My are matroids on the ground sets Ey, Ea, and

that conditions (G1)-(G3) hold. If the mazimal common restriction N of My and My has

no loops, then x(Pn(Mi, My); \) = ——————~X(A']1;(AI)\;";E\/;'12‘A).
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2.3.3. Weighted characteristic polynomial of Py(M;, M,).
Recall that the flats of M(WS,) =  Py(Mi,M,) are the subsets of
EWS, \ {{a, ¢}, {e,b}}) U EW,, U {{a,c},{c,b}}) of the form A; U Ay where Ay
and A, are flats of M; = M(WS, \ {{a,c},{c,b}}) and My = M (W, U {{a,c}, {c, b}}),
respectively, and Ay N'T = Ay, N T. Also, recall that from Definition 2.2.1 we have
XM;2,9) = Ppas r oM@ X(M/F3y).

Using this definition of the weighted characteristic polynomial X(M;z,y) and the formu-
lation of the flats of the generalized parallel connection Py(Mi, Ma), it follows that the
weighted characteristic polynomial x(Py(My, My);z,y) of Py (M, My) is given by Equa-
tion 2.3.6 [3].

1
TP My METGa = P
ﬂatsWofN:El |X(N/W’y)

X ( > un(W, Z)a\?\3(My/Z; z, y))

flats Z of N with WC Z
(23.6) x ( > un (W, 2)2\?'x(M2/Z; , y))

flats Z of N with WC Z
where py is the Mobius function of N. By applying Equations 2.2.2 and 2.3.2 to
(Pn(My, Ms); x,y) Bonin simplified Equation 2.3.6 to get Equation 2.3 7

1
ey . X = el r(T)
t(Pn(My, Ma);z,y) (=n ﬂm;()m TV (N/W; (z — D)(y — 1))

yIZI

X ( 2 un (W, Z>'(y—__ﬁ-r_(z—)t(‘Ml/Z3‘”‘y)>

flats Z of N with WC Z
ylzl
(2.3.7) X Z un (W, Z)(—y__l),.mt(MﬁZ; ,y)
flats Z of N with WC Z

where uy is the Mobius function of N [3].

From the characterizations presented in this chapter, we can therefore use the same for-
mula 2.3.7 to compute the Tutte polynomial of the cycle matroid M(WS,) of an n-
wheel-sunflower, by substituting M; = M(WS, \ {{a,c},{c,b}}) and My = MW, U
{{a,c},{c,b}}), where puy is the Mébius function of the common restriction N of M; and

M.




CHAPTER 3

T-uniqueness of wheel-sunflowers

In this chapter we are going to show that wheel-sunflowers are 7T-unique as one of the
applications of Tutte polynomials. A graph G is T-unique if any other graph H having the
same Tutte polynomial as G is isomorphic to G. Several recent papers show that certain

graphs such as wheels and ladders are determined by their Tutte polynomials [4, 11, 12].

The organization of this chapter is as follows. Section 3.1 is a review of basic properties of
the Tutte polynomial as well as a summary of parameters of a graph G that are determined
by its Tutte polynomial ¢(G;z,y); Section 3.2 gives some properties of wheel-sunflower
graphs which enable us to imitate the proofs of T-uniqueness of wheels. The first two

sections contain main tools used in Section 3.3 to prove that wheel-sunflowers are T-unique.

3.1. The Tutte polynomial and rank-size generating polynomial

This section is a review of the definition of the rank-size generating polynomial in relation
to the Tutte polynomial as found in [12]. We also include some parameters that are

encoded in the Tutte polynomial of a graph G.

The rank-size generating polynomial is defined as: F(G;z,y) = ZAQE z"AWylAl where the
coefficient of z'y? in F(G;z,y) counts the number of spanning subgraphs in G with rank
i and j edges. Both F(G;z,y) and ¢(G; =, y) contain exactly the same information about
G [12]. However, the Tutte polynomial ¢(G;x,y) has several properties not shared by
F(G;z,y). In particular, t(G; z,y) satisfies the fundamental contradiction rule t(G; z,y) =
tG —e;z,y) + t(G/e;z,y), provided that e € E(G) is neither a coloop nor a loop, where

G — e and G/e denote the result of deleting and contracting the edge e in G respectively.

The proofs of Lemma 3.1.1, Theorems 3.1.2 and 3.1.3 are found in [8].

LEMMA 3.1.1. Let t(G;z,y) = Zbij;v"‘yj. If G has neither coloops nor loops, then r(G) =
maz{i : bip #0}, n(G)= maz{j : boj # 0}

Recall the definition of a 2-connected graph from Section 1.2.1.
18
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THEOREM 3.1.2. If 7(G) and n(G) are both positive, then the number of 2-connected com-
ponents of G is min{i : by # 0}. Otherwise, G has |E(G)| 2-connected components. In
particular, If G is 2-connected and t(H;z,y) = t(G; z,y), then H is also 2-connected.

For the rest of this chapter we are going to follow the notation found in [12]. A cycle of
length n is called C,, or an n-cycle; for n = 3,4, 5 we also refer to them as triangles, squares
and pentagons. A chord of cycle C is an edge joining two non-consecutive vertices of C. If

P(z,y) is a polynomial, we denote by [z*y’] P(z,y) the coefficient of 2y’ in P(z,y).

To prove that a graph is T-unique, we first show that some parameters of this graph are
determined by its Tutte polynomial. Theorem 3.1.3 provides a list of such parameters

which are used in this thesis. We refer to [12] for more details.

THEOREM 3.1.3. Let G = (V, E) be a 2-connected graph. Then the following parameters

of G are determined by its Tutte polynomial.

(i) The number of vertices and the number of edges.
(i) The number of cycles of shortest length.
(i) If G is simple, the number of cycles of length three, four and five; for cycles of length

four it is also possible to determine how many of them have ezactly one chord.

3.2. Properties of wheel-sunflower graphs

In this section we are going to give results on number of triangles, number of cycles of length
four, each with exactly one chord, and number of cycles of length five, each with exactly
two chords with a common vertex (that is triangulated pentagon), from wheel-sunflower
graphs. These results will enable us to imitate the proof of T-uniqueness of wheels found
in [12]. We start by presenting Lemma 3.2.1 which we will use to prove Proposition 3.2.2

on the number of triangles in an n-wheel-sunflower W.S,,.

LEMMA 3.2.1. Let 7(WS,,) be the number of triangles in an n-wheel-sunflower W S,. Then
T(WSn+1)) = 7(WS,) + 2, forn 2 2.

PROOF. From Definition 2.1.1, the construction of WS(41) from W S,, involves adding
four edges to E(WS,) : one rim edge, one spoke and two petal edges. These add two more

triangles so that the total number of triangles in WS(,41) becomes (W S,) + 2. O
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PROPOSITION 3.2.2. Let WS, be an n-wheel-sunflower. Then 7(W S,) = 2n, for n 2 2.

PROOF. We are going to use induction on n. For n = 2, we get a 2-wheel-sunflower
WS, which has 4 triangles. The two triangles have edge sets of a rim edge and two spokes
{{a1, a2}, {ar, 2}, {az, 2} }, {{az, a1}, {a1, 2}, {as, v}}. And the remaining two have the edge
sots of a rim edge and petal edges {{a1,as}, {a1,c1}, {az, c1}}, {{a1, a2}, {a1, ca}, {az, c2}}-
Assume the proposition holds for n = k where n > 2. Then 7(WS},) = 2k. Consider the
case n = k4 1. Then by Lemma 3.2.1, we get 7(W Sgt1)) = 7(WSk) +2. By the induction
hypothesis we have T(WS4y1)) = 2k +2 = 2(k + 1). Hence the proposition holds by

induction. 0

Recall that a chord of a cycle is an edge joining two non-consecutive vertices of a cycle.
Now we are going to give results on the number of all 4-cycles in an n-wheel-sunflower with

exactly one chord.

LEMMA 3.2.3. Let p(WS,,) be the number of 4-cycles in W S,, with exactly one chord. Then
p(WSni1y) = p(WSh) + 2, forn 2 2.

PRrROOF. To construct WSg41) from WS, using Lemma 3.2.1, we add four edges to
E(WS,) : one rim edge, one spoke and two petal edges. Each of the new rim edge and
spoke contributes one chordal 4-cycle. So the total number of 4-cycles, with exactly one

chord, in W S(n41), 18 p(WS,) + 2. ]

PROPOSITION 3.2.4. Let WS, be an n-wheel-sunflower and p(WS,,) be the number of 4-

cycles with ezactly one chord in WS,,. Then p(WS,) =2n forn 2 3.

PROOF. We are going to use induction on n. For n = 3 we get a 3-wheel-sunflower
W S; which has six 4-cycles with exactly one chord. Such six 4-cycles have the following
edge sets. The first three edge sets have a rim edge as a chord. Since there are three rim

edges in WS, then we have the following:
{{a1,as}, {a1, 2}, {az, ¢}, {1, e}, {as,c1}},
{{az, as}, {az, 2}, {as, ¢}, {az, &2}, {as, ca}},
{{as, a1}, Las, 2}, {a1,x}, {as, cs}, {ay,c3}}




3.2. PROPERTIES OF WHEEL-SUNFLOWER GRAPHS 21

In the next three edge sets the chord is a spoke. Since there are three spokes in W.S,,, then

we have the following:

{{ay,z}, {a1, as}, {as, az}, {as, z}, {z, as}},

{{(L27 :L‘}3 {a2, as}a {a’31 al}) {a’lu m}7 {I, a'3}}7

{{(L3, :E}) {(1,3, a’l}7 {(11, a2}7 {a27 il:}, {IL‘, (11}}.
Assume the proposition holds for n = k where n > 3. Then p(WSk) = 2k. Consider the
case n = k + 1. Then by Lemma 3.2.3, we get p(W Sgk41)) = p(WSk) + 2. By the induction

hypothesis we have p(W Si1)) = 2k+2 = 2(k+ 1). Therefore, the induction holds for any
n > 3. O

Now we are going to give results on the number of all 5-cycles in an n-wheel-sunflower with
exactly two chords with common vertex. Such type of 5-cycles are also called triangulated

pentagons.

LEMMA 3.2.5. Let (W S,,) be the number of 5-cycles in W S,, with ezactly two chords with
a common vertez. Then (W Sgi1)) = (W Sn) +3, forn 2 4.

PrOOF. To construct WS(41) from WS, using Lemma 3.2.1, we add four edges to
E(WS,) : one rim edge, one spoke and two petal edges. The new rim edge contributes
contributes three triangulated pentagons: two of these include the new petal and one
which involve spokes and rim edges only. So the total number of triangulated pentagons

in WS4y is ((WSn) +3. .

In Proposition 3.2.6 we are excluding the cases of n = 2, 3 because WS has no triangulated

pentagons and a 3-wheel in a 3-wheel-sunflower has no triangulated pentagons.

PROPOSITION 3.2.6. Let WS, be an n-wheel-sunflower and C((WS,) be the number of

triangulated pentagons in WSy. Then C((WS,) = 3n, forn 2 4.

PROOF. We are going to use induction on n. For n = 4, we get a 4-wheel-sunflower
WS, which has twelve triangulated pentagons. Such twelve triangulated pentagons have

the following edge sets. The first cight edge sets of triangualated pentagons have a petal

contained in two as follows:

{{ah bl}) {blv 0'2}’ {a2’ a3}7 {a37 :C}v {xv al}a {al’ a2}’ {a2a :E}},
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{{a, 01}, {br, a2}, {a1, as}, {as, 2}, {2, a2}, {a1, a2}, {a1, 2}},
{{az, b2}, {2, a3}, {a3, as}, {a4, 2}, {7, ax}, {az, as}, {as,z}},
{{az, b2}, {b2, as}, {az, a1}, {a1, 2}, {, as}, {as, a2}, {a2, 2}},
{{as, b3}, {bs, as}, {as, a1}, {ar, 2}, {, as}, {as, as}, {as, z}},
{{as, ba}, {03, as}, {as, a2}, {az, 2}, {2, a4}, {aa, as}, {as, 2}},
{{as, b}, {bs, a1}, {a1, a2}, {as, 2}, {z, as}, {as, a1}, {a1, x}},
{{a4, b}, {bs, a1}, {as, as}, {as, z}, {z, a1}, {a1, a4}, {as,z}}.
Each of the last four edge sets involves four spokes and three rim edges only as follows:

{{a, x}, {a2 z}, {as, z}, {as, z}, {a1, az}, {az, as}, {as, as}},

{{(l-z, I}v {a3* 51“}7 {a47$}’ {al’ ‘73}1 {a27 a3}7 {a'37a4}v {a47 al}}>
{{a3:$}! {a‘i’ l'}’ {al’ l‘}, {GQ’ :1]}, {a37a4}’ {a4’a1}’ {al’ a2}}’
{{as, £}, {03, &}y 102, T} {as, o}, {amal}, {abCLQ}, {as, as}}.

Assume the proposition holds for n = k where n > 4. Then ¢(WSy) = 3k. Consider the
case n = k+ 1. Then by Lemma 3.2.5, we get ((WS(k+1)) = ¢(W Sk) + 3. By the induction
hypothesis we have: ((WSw41) =3k +3 = 3(k + 1). Therefore, the induction holds for
any n > 4. O

3.3. T-uniqueness

Our aim in this section is to study which information about an n-wheel-sunflower graph

WS, is contained in its Tutte polynomial and use it to prove its T-uniqueness.

In Proposition 3.3.1 we are going to prove T-uniqueness of wheel-sunflowers by imitating
the routine proof used to prove T-uniqueness of wheels [12]. The technique requires that
we consider the case where the smallest circuit of a graph G is a triangle and an edge in G
does not belong to three or more triangles. Because of this we are going to exclude WS,

where n = 2, 3.

PROPOSITION 3.3.1. For every n > 4, the wheel-sunflower WS, is T'-unique.
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PROOF. We begin our proof by taking a graph H such that t(H;z,y) = t(WSn; 2, y) for
n > 4. Then by applying Theorem 3.1.2 we get that H is a 2-connected graph. Since the
graph H is 2-connected and t(H;z,y) = t(WS,; z,y), then by applying Theorem 3.1.3 to

H we also obtain the following additional information:

(i) |[V(H)| = \V(U'S”)l = 2n + 1, from Definition 2.1.1 of W S,,;
(ii) |E

(iii) H has 2n triangles, as WS, in Proposition 3.2.2;
)

J(H)| = |E(WS,)| = 4n, from Proposition 2.1.3 of Section 2.1.1;
(iv) H has 2n cycles of length 4, as WS, all of which have exactly one chord, from

Proposition 3.2.4.

Now before proving T-uniqueness of wheel-sunflower graphs for n > 4, we are going to prove
a couple of claims that must be satisfied by the chosen graph H. We start by reviewing

the definitions of a complete graph and a bipartite graph as found in [20].

A complete graph is a graph where every pair of distinct vertices are adjacent. A complete
graph on n-vertices is denoted by K. A bipartite graph is a graph whose vertex set can
be partitioned into two non empty sets V3 and V5 in such a way that every edge joins a
vertex in Vj to a vertex in Va. A complete bipartite graph has every vertex in V1 adjacent
to every vertex in Va. If V; has r vertices and V; has s vertices then the complete bipartite

graph is written as K, and V; and V; are called partite sets of size r and s respectively.

Now we are going to state and prove the claims. Claim 1 entirely corresponds to that of
T-uniqueness of wheels found in [12]. We prefer to repeat the same here for completeness

of T-uniqueness of wheel-sunflower graphs.

Claim 1. There is no edge in E(H) belonging to three or more triangles.

PROOF. Let us show that it is possible to obtain from t(H;z,y) = t(WSy; z,y) the
number of subsets of E(H) consisting of three triangles meeting at a single edge, or which
is the same, or subgraphs K,3 with an extra edge joining the two vertices in the partite
set of cardinality two: call these subsets ]\'.3'3. Such type of subgraphs contribute to the
coefficient of z%y” in F(H;z,y). There are other three subsets of E(H) that contribute
to the coefficient of zty”. We study first which other subsets of E(H) contribute to this

coefficient (Figure 3.1):

_
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(1) Cycles of length five with two chords with a common vertex (that is triangulated

pentagon).

(2) Subgraphs K33 with an extra edge joining two vertices in the partite set of order three.

(3) Complete subgraphs Ky plus one edge.

W R A/

Y 2) 3)

FIGURE 3.1. All possible subgraphs in H with rank 4 and size 7 in addition

~+
to Kyg

The situation described in (3) is impossible because there are no K, in H. Using the fact
that cach cycle of length four must have one and only one chord then situation (2) is
also impossible. This implies that a cycle of length 5 cannot have three or more chords.
Therefore, the only contributions to [z%y®|F(G;x,y) are K53 and triangulated pentagons

to get Equation 3.3.1:
(3.3.1) EYRF(Gi ) =t e

where ¢ is the number of cycles of length five as in equation 3.3.1 and ¢ is the number of
K, [12]. Now we have to show that the value of ¢ in equation 3.3.1 is zero. To see that
¢ = 0 we need another equation involving ¢ and c. This equation is obtained by analyzing
the coefficient of z4y® in F(H;z,y); that is, subgraphs in H with rank 4 and size 6. The

possibilities are the following (Figure 3.2):

(1) Two edge-disjoint triangles.

(2) A cycle of length four with its chord and any other edge.
(3) A cycle of length five with one chord.
(4)

4) A subgraph Kj3.

Such type of subgraphs presented in (1) and (2) contribute ’—’%112 — n and n(2n — 5),
respectively, to the coefficients in F' (H;x,y), where n is the order of each subgraph. Each
cycle of length five must be triangulated, otherwise there would be a cycle of length four
without chords. Since the maximum number of chords in a cycle of length five is two, see
Figure 3.1 case (1), then the number of cycles of length five with one chord equals twice
the number of triangulated pentagons. On the other hand, in Ky 3 there are three cycles

of length four without chords, refer to Figure 3.2 case (4) because that is Ko 3. As we have
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M O
N

FIGURE 3.2. All possible subgraphs in H with rank 4 and size 6

seen previously the chord must join the two vertices in the partite set of cardinality two.
This means that in H the number of K3 equals the number of K,. Hence we obtain
Equation 3.3.2 involving ¢ and c.

(3.3.2) [*?F(G;z,y) = t+2c+ n(z_n_x__—ll) —n+n(2n - 5).

Equations 3.3.1 and 3.3.2 imply that it is possible to obtain ¢ and ¢ from the coefficients
of t(H;z,y) = t(WSh;z,y). As in WS, for n > 4, there is no edge belonging to three

triangles, then the value of ¢ must be equal to zero. [

The proof of the next claim is an imitation of the proof found in [12] for wheels. We start
with some definitions and notation used in Claim 2. We are going to call an edge e € E(H)
a diagonal edge if it is the chord of one cycle of length four; if e is the chord of the 4-cycle
Oy, then we write e = d(Cy). If e is not the chord of any cycle of length 4, we are going to
call it a non-diagonal edge. In a wheel-sunflower graph, diagonal edges are rim edges and

spokes, while the non-diagonal edges are petal edges.

Claim 2. In H there are 2n diagonal edges and 2n non-diagonal edges.

PROOF. Let U be the set U = {(e,C4) : € = d(Cy)}. Let us define p; as the number
of cycles of length 4 having an edge e; as a chord. By Claim 1 we know that 0 < p; < 1,
that is each cycle of length 4 has either one chord or zero. Therefore the cardinality of U
equals 2n because there are exactly 2n cycles of length 4, from Proposition 3.2.4. But also
we know that there are 4n edges in WS, from Proposition 2.1.3 of Section 2.1.1. Assume

that every edge in WS, is a chord. Then |U| = p1+ -+ Pan- This implies that there must
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be 2n edges with p; = 1 and 2n edges with Pi = 0 because we have already said that H

has 2n-cycles of length four by applying Theorem 3.2.4 {6 I 0

From now on we are going to assume that the diagonal edges are ey, - - - eon: that is
s ) ) n) S

pr=-=py=1and popp; =... = Pan = 0 for the non-diagonal edges {eant1,- - ,ean}.

Claim 3 is also an imitation of the routine proof done in [12] for wheels

Claim 3. A diagonal edge belongs to exactly two triangles and a non-diagonal edge belongs

to exactly one.

PROOF. Consider the set F = {(e,t) : e is an edge of triangle t}. Let us define 7; as
the number of triangles that contain an edge ¢;. From Claims 1 and 2 we know that 7; = 2
for 1 <4 < 2n and that 7; <1 for 2n + 1 < i < 4n. Therefore summing over all triangles
in H, we deduce that the maximum value of |F| is 2n + 4n = 6n. But by summing over all
4n edges, we obtain [F| =7 + .. 4+ 7, = 4n + Tont1+ -+ + Ty < 6n. Hence 7; = 1 for

2n+1 <7 < 4n and the claim is proved. O

Now in an n-wheel-sunflower graph let us call all squares, whose diagonal edges are rim

edges, as diamonds and denote them by d;. So we define a diamond d; as follows.

DEFINITION 3.3.2. A diamond d;, in an n-wheel-sunflower graph is a square having a rim

edge as a chord.

Claim 4. If every vertex v € V(H) is incident with a non-diagonal edge, then there is a

second non-adjacent edge incident with v.

PROOF. Let f be the non-diagonal edge incident with v and let d; be the unique
diamond that contains f. Then this diamond d; contains another edge incident with v, call
it fi. If f) is a non-diagonal edge, we have finished. If not, then f; is a diagonal edge and
there exists a diamond d, different from d; and containing f;. Let fo be the second edge
of dy incident with v. Then by applying repeatedly the previous argument, we construct
a succession of diagonal edges f, f1, fa2,- -, fr incident with v. Note that edges are not
repeated in this list, because, by Claim 1, there is no edge belonging to three triangles.
Furthermore, note that these diagonal edges correspond to spokes in an n-wheel-sunflower
graph. As the number of edges is finite, we must necessarily end in a non-diagonal edge

a

incident with v, necessarily different from f;.
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Now to prove the next claim we are going to use the following definitions. A graph is

connected if every pair of vertices is joined by a path. Secondly, a maximally connected
Y, > sctec

component is a connected subgraph of a graph to which no vertex can be added and it still

be connected. This maximally connected component will be referred to as the connected

component in this thesis. Hence, examples of connected components in W.S,, are wheel-

sunflowers with a missing spoke WS\ {a, z} or wheel-sunflowers with a missing rim edge

WS, \ {a, b}. Their rank is still 2n and the size is 4n — 1 since they have one edge missing.

For a thorough introduction to the subject of connected graphs we refer to [20]. The

following Lemma is used in proving Claim 5.

LEMMA 3.3.3. Let WS, \ {{ai,z}} be an n-wheel-sunflower graph without spokes {a;, z}.
Then |[E(W S, \ {{ai,z}})| = 3n.

PROOF. We know that an n-wheel-sunflower WS, has 4n edges from Proposition 2.1.3
of Section 2.1.1. Furthermore, from Definition 2.1.1 of WS, there are n spokes. Since WS, \
{{ai,z}} is obtained by deleting all spokes {a;,z} in WS,, then [E(WS, \ {{a;,z}})| =
BWS)| - | Uiy {01, 2} = 4n = n. O

Claim 5. There is no subgraph in H isomorphic to the wheel-sunflower WS, for p < n.

PROOF. Recall the relationship between rank and size of the wheel-sunflower. We know

that WS, has rank 2p from Section 2.1.2 and size 4p from Proposition 2.1.3 of Section 2.1.1.

The proof of Claim 5 consists of showing that the coefficient of 2*Py* in F(H;z,y) is zero
for all p < n. This is equivalent to proving that in WS, there is no subgraph G of rank 2p
and size 4p. We are going to use this equivalent form. Then we are going to show that it

is impossible to find a subgraph in WS, with the relationship of rank 2p and size 4p.

If a subgraph of WS, does not contain the central vertex (the hub), then we have the

following possible cases:

(i) it is a forest or;
(ii) edge-disjoint or vertex-joint triangles or;
(ili) a graph WS, \ {{a;, z}} and its size is 3n from Lemma 3.3.3 and its rank is |[V(W S, \

{{ai, z}})| —1=2n -1, so it cannot be a wheel-sunflower W.S,,.
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Therefore, the subgraph G must contain the central vertex. Now we are going to consider

the subgraph that is the maximally connected component in WSy that contains the central

vertex. Let WS\ {a,z} be an n-wheel-sunflower with a missing spoke {a,z}. This is the

connected component in WSy that contains the central vertex ¢ with rank 2k which is the

same as that of WSy but its size is 4k — 1. The same argument applies to another connected

component of WSy which is an n-wheel-sunflower with a missing rim edge {a,b} denoted
by WSk \ {a,b}. This implies that the connected component G that contains this central
vertex has rank 2k and size at most 4k — 1. The rest of the components are edge-disjoint or
vertex-joint triangles and forests. So again it is impossible to reach the required relation

between rank and size, which is rank 2p and size 4p. (]

Recall Proposition 3.3.1 about T-uniqueness of wheel-sunflowers which we re-state and

prove now.
PROPOSITION 3.3.4. For every n > 4, the wheel-sunflower WS, is T-unique.

PROOF. To prove this it means we should be able to construct an n-wheel-sunflower,
for n > 4, isomorphic to a graph H, using the diamonds d; which we have defined in
Definition 3.3.2. Recall that the set of all non-diagonal edges is denoted by {e2nt1,* , €an}
Now let V be the set of all elements of the form (e, v) where e € {egni1,- - - ,€4n} 1S & non-
diagonal edge in G and v is a vertex incident with e in G such that G is a subgraph of
H. Recall that non-diagonal edges correspond to petal edges in WS,,. Therefore the size
V| = 6n — 2n because there are 2n non-diagonal edges, each non-diagonal edge is incident
to two vertices and half of the number of vertices is counted twice. Let d! be the non-
diagonal degree of v;, that is, the number of non-diagonal edges incident with v;. By Claim

4, either 0] is zero or is greater than one. Now recall that H has 2n+ 1 vertices. Therefore,

by using all the vertices of H, we must have:
V| =081+ 0+ + Guyy = 4n.

This implies that there is at least one vertex with non-diagonal degree equal to zero; assume
it is v;. That means v, is incident only with diagonal edges. We can now reconstruct the
wheel-sunflower WS, as follows. Let f; be an edge incident with vy; then fi belongs
to a diamond d, which contains a second edge, fa, incident with vy. As f is diagonal,
there exists a new diamond dy containing fy and an edge fs incident with vi. Applying

successively the same argument, we obtain a list of diagonal edges f1,- -, fi incident with



CHAPTER 4

Component numbers of links from wheel-sunflowers

In this chapter we apply the theory of Tutte polynomials to classify links associated with
wheel-sunflower graphs using component numbers. We start by reviewing the relationship
between a graph and its corresponding link in Section 4.1 and use this relationship to
construct links from wheel-sunflower graphs. Then we give number of components in links

corresponding to wheel-sunflowers and their variations in Sections 4.2 and 4.2.1.

4.1. Construction of a link from an n-wheel-sunflower

In this section we introduce how a link K(WS,) from an n-wheel-sunflower WS, is con-
structed. To do this we are going to construct a diagram which we call the link universe

UK(WS,)) of an n-wheel-sunflower.

We start by constructing the medial graph from an n-wheel-sunflower and then replace the
vertices of the medial graph by crossings. Then we define the part which goes under or
over at a crossing to get a link K(WS,). The medial graph of a graph WS, denoted as
H = H(WS,,) is defined as follows:

DEFINITION 4.1.1. Let the vertices of correspond to edges E(WS,) of WS, and let two
vertices of H be connected by an edge if the corresponding edges in W S,, are subsequent
WS,. Then H = H(WS,) is called the

in the cyclic order of edges around some vertex 1

medial graph of WS,.

crossings the resulting diagram is called the

(K(WSp)). 1t is called the link

By replacing the vertices of H(WS,) with
link universe corresponding to WSh and is denoted by U

e : i z is, it does not sa;
universe because it does not give information about the crossings - that s, it doe y

3 fm g is ¢ ¢ 15).
which crossing is an overpass and which one 18 an underpass [15]
4.1 shows a link universe corresponding to & ¢-wheel-sunflower.

ExampLE 4.1.2. Figure -
while the solid lines form its

Notice that the dotted graph is a 6-wheel-sunflower W S,

corresponding link universe.
30
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FIGURE 4.1. A link universe from a 6-wheel-sunflower

Alink K (W S,,) from WS, is obtained from a link universe by defining the part which goes
under or over at a crossing. Figure 4.2 shows a construction of a 6-wheel-sunflower (dotted

lines) and its corresponding link, K (W Sg) (solid lines).

FIGURE 4.2. A link K(WSs) corresponding to W Se

Notice that by tracing crossing cycles in the link diagram K (W Se), there are three com-

/ etk i i rm- component
ponents. The term component means a crossing cycle in a link and the te P

es that form a link. For further details on

[14].

number means the number of crossing cycl
construction of links from graphs we refer the reader to

’ i ) link diagram
In this thesis we are going to consider the case where K (WS,) is an unoriented li g

That is, we are going to consider the case of

(G), denoted as L(K(G)) is

¢
corresponding to n-wheel-sunflowers W.Sn.

links without direction. In this case the linking number of K

defined as follows [15]:
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DEFINITION 4.1.3. For an unoriented link diagram K(G), a number L(K(G)) =

(=1)E@)(=2)~! where c is the component number of K(G) and E(G) is the edge set
of G.

EXAMPLE 4.1.4. Using Defintion 4.1.3 on a 6-wheel-sunflower, W Sg, we have
L(K(WSg)) = (=1)EWSe)(_g)e-1

= (1= =1,

For a graph G, with the Tutte polynomial, ¢(G, z,y), it is well known that the evaluation
t(G,-1,-1) = (=1)E(=2)*! where c is the component number of the link whose

universe is the medial graph of G [15].

Now we review relevant ideas playing a role of determining linking numbers in link diagrams

associated wheel-sunflowers. Proposition 4.1.5 is given by Mphako [15].
PROPOSITION 4.1.5. Let G be a planar graph. Then

(i) L(K(G)) = (=2)"' if G is a graph with n vertices and no edges. Thus L(K(G)) = 1
if G is a single vertex;
(i) L(K(G)) = =1 if G is a coloop or a loop;
(ii) L(K(G)) = —L(K(G \ e)) if e is a loop;
() L(K(G)) = —L(K(G/e)) if e is a coloop; and
(v) L(K(G)) = L(K(G \ e)) + L(K(G/e)) if e is neither a loop nor a coloop.

The next proposition, also given by Mphako [15], gives other graph operations which do not

affect the component number of the associated link. Proposition 4.1.7, uses the following

definitions.

DEFINITION 4.1.6. For any graph G :

(i) A series pair is a pair of any two edges e and f in G whose common vertex has degree

2

(ii) A parallel pair is a pair of any two edges e and f that form a 2-cycle in G.
PROPOSITION 4.1.7. Let G be a planar graph. Then

(i) L(K(G)) = L(K(G/e/f)) if e and f are a series pair; a'nd
(i) L(K(GQ)) = L(K(G\e\[)) ife and [ are a parallel pair.
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4.2. Component numbers of links associated with wheel-sunflowers

In this section we determine component numbers of links corresponding to wheel-sunflower

graphs. We start by looking at how these component numbers change with the removal of

certain edges in an n-wheel-sunflower graph.

The following notation is used. A spoke is denoted by {a;, 2}, where a; is any vertex in
the rim and x is the central vertex of an n-wheel-sunflower. Recall that an edge of the
form {a;, a;4 1} foralli € {1,2,.-. nn+1= 1} in an n-wheel-sunflower is called a rim
edge. But from now on, if one rim edge is under consideration we will denote it as {a,b}.
As such we are going to call an edge set of the form {{a,c}, {c,b}} as a petal such that
¢ is the vertex where the two petal edges {a, ¢}, {c,b} intersect and {a, b} is a rim edge

under consideration in W'S,,. Lemma 4.2.1 is used in Proposition 4.2.2.

LEMMA 4.2.1. Let W83\ {a, 2} be a 3-wheel-sunflower with a missing spoke {a,z} and

K(WSs\ {a,z}) be its corresponding link. Then K(W Sy \ {a,z}) has three components.

PROOF. By using the method in Section 4.1 we construct K(WSs\ {a,z}) from W S5\

{a,z} in Figure 4.3 and count its components. a

FIGURE 4.3. A link K(WSs\ {a,z}) corresponding to WSs \ {a, v}

PROPOSITION 4.2.2. Let WS, \ {a,2} be an n-wheel-sunflower with a missing spoke {a,z}

and K(W S, \ {a,z}) be its corresponding link. Then

(1) If n is odd and n > 3 then K(WS, \ {a,2}) is a 3-link.
(i1) If n is even and n > 2 then K(WS, \ {a,2}) is a 2-link.

d : 2
PROOF. We use induction on n. If n = 2 then K(WS; \ {a,z}) is a link 7} from
the table of knots in the Appendix. Hence it has two components. For n = 3 we have

L(K(W S5\ {a,2})) which is a 3-link by Lemma 4.2.1. Assume it is true for n = 2m — 1
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and n = 2m for some m > 1. Now consider n = 2m+1 and n = 2m+ 2. Assume that each
diagram in Figure 4.4 represents the number L of the link corresponding to the diagram.
We start with a d-wheel-sunflower with a missing spoke {a,z} denoted by WS, \ {a,z}
and increase it to a (d + 2)-wheel-sunflower with a missing spoke WS4 \ {a,z}. Thus

by applying Propositions 4.1.7(7), and 4.1.5(iii) accordingly we get Figure 4.4.

.
| S “\‘ Q) s

.\‘/ } . § ’ =
L

FIGURE 4.4. Computation of L(K(W Sy \ a,z))

Hence L(K (W Swy2) \ {a,z})) = —=L(K(W Sy \ {a,z})). Thus substituting d + 2 by n =
2m+ 1 or n = 2m + 2 we have the following results:
L(l\’(”'S(;’mH) \ {(l.l'})) = L([{(H,'S(thl) \ {CL,ZL‘})),

L(K(WS@ams2) \ {a,2})) = LK(WS@m) \ {a,z})).
Therefore, the proposition holds by induction. O

LEMMA 4.2.3. Let WS, be a 2-wheel-sunflower and K(WSs) be its corresponding link.

Then K(WS,) has 3 components.

PROOF. By using the method in Section 4.1, we construct K(WSs) from WS; in
O

Figure 4.5 and count its components.

FIGURE 4.5. A link K(WS,) corresponding to WSz

PROPOSITION 4.2.4. Let WS, be an n-wheel-sunflower and K(WS,) be its corresponding

link. Then K(WS,) isa 3-link if n 1s even. Otherwise it is a 2-link.
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PROOF. By induction on n. If n = 2 we have L(K(WS,)), which is a 3-link by
Lemma 4.2.3. Assume it is true for n = 2m — 1 and 2m for some m > 1. Now consider
n=2m+ 1 and 2m + 2. Assume that each diagram in Figure 4.6 represents the number
L of the link corresponding to the diagram. If we start with a d-wheel-sunflower then by
applying Propositions 4.1.7(¢), 4.1.7(i4) and 4.1.5(44i) accordingly, we get a (d — 1)-wheel-

sunflower with a missing spoke.

FIGURE 4.6. Computation of L(K (W Sy))

If d = 2m + 1 then by Proposition 4.2.2(i7), it is a 2-link. Similarly, if d = 2m then by

Proposition 4.2.2(7), it is a 3-link. Therefore, by induction the proposition holds. O

Proposition 4.2.5 on wheels is given by Mphako [15] and we will need it to prove Proposi-

hion 4.2.0.

PROPOSITION 4.2.5. Let W, \ {a,z} be an n-wheel with a missing spoke {a,z}, where x is
the central vertex of Wy, and K(W,\{a,x}) be its corresponding link. Then KW,\{a,z})

s a 2-link.

Recall from Chapter 2, Section 2.3, that:

(i) An n-wheel W,, with a petal {{a,c}, {c,b}} such that {a,b} € E(W,) and ¢ & V(Wh)

is denoted by W, U {{a,c}, {c, 0} };
(ii) An n-wheel-sunflower WS, with a missing petal {{a, c},{c,b}}

{{a,c},{c,b}} Figure 4.7.

is denoted by WS, \

PROPOSITION 4.2.6. Let W, U {{a,c},{c,0}} be an n-wheel with a petal {{a,c}, {e,b}},

such that {a,b} is a rim edge and K(W,U {{a,c}, {c, b}})
K(W, U {{a,c},{c,b}}) is a 2-link.

be its corresponding link. Then
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FIGURE 4.7. W, U {{a,c}, {c,b}} and WS, \ {{a, c}, {c,b}}

PrOOF. By induction on n. If n = 2 then K(W, U {{a,c}, {c,b}}) is the link 62 from
the table of knots in the Appendix, hence it has two components. Assume it is true for
n = 2m — 1 and 2m for some m > 1. Then consider n = 2m + 1 and n = 2m + 2.
Then we trace the rim edge {a,b} on an n-wheel such that {{a,c},{c,b}} is a petal.
Thus by applying Proposition 4.1.5(v) on an edge {a,b} in W, U {{a, c},{c,b}}, we have
Equation 4.2.1 from Figure 4.8:

L(IK(W, U {{a,c},{c,b}})) = L(K(W,U{{a,c},{c,b}}\ {a,b}))
(4.2.1) + L(K(W,U{{a,c},{c,b}}/{a,b})).

&

FIGURE 4.8. Computation of L(K (W, U {{a,c} {c,b}})

But (W,, U {{a,c}, {c, b\ {a, b} is an (n + 1)-wheel with a missing spoke {c,x}, which
we denote as Wi,41) \ {¢, #} and we can casily compute L(K(Wni1) \ {c,z})) by Propo-

sition 4.2.5. Furthermore L(K (W, U {{a,c}{c, b}}/{a,b})) can be simplified by deleting

T s =) ith
the two parallel pairs of edges by Proposition 4.1.7(id). We thus get an (n FriioBy

i : equation.
a missing spoke, which we denote as Wn-1) ' {8} In fhe nexi &4

LK (W, U {{a, e}, {c. 03D/ {a:b}) = LEWa-y \ {a,z})).
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By Proposition 4.2.5 we can also compute L(K(W(n_l) \ {a,2})). Thus by substituting
these back into Equation 4.2.1 we get:

LEWnU{a.ch (b)) = LKW\ {e,2}) + LK (Wy_1y \ {a,z})).

Let Wiasr) \ {c,z} be a (d + 1)-wheel with a missing spoke and Wa-1) \ {a,z} be
a (d — 1)-wheel with a missing spoke. Then by Proposition 4.2.5 we know that
LKW \ {e,;2}) = LKWy \ {a,2})). Hence LIK(Wa U {{a,c},{c,b}})) =
LIK(W(4-2) U {{a, c}, {c, b}})). Thus for d = 2m + 1 and 2m + 2 we have:

L(A’(IV(QW'H) U {{a’ C}. {07 b}})) = L(K(W(Qm—l) U {{a’ C}a {Cv b}}))v

L(A’(IVQ"H{Z) U {{(l, C}~ {C: b}})) = L(K(LV(Qm) U {{aa C}’ {C, b}}))

Therefore, by induction the proposition holds. a

4.2.1. Component numbers of links associated with F,,.
In this sub-section we are going to introduce a class of n-fan-sunflower graphs as
one of the variations of an n-wheel-sunflower and then determine the component num-
ber of any link whose associated graph is in this class. We are going to denote an

n-fan-sunflower graph by F,.

An n-fan-sunflower F,, is obtained by deleting one "outer” trianlge from an n-wheel-

sunflower WS,,. Figure 4.9 is an example of Fg.

FI1GURE 4.9. A 6-fan-sunflower Fy

LEMMA 4.2.7. K (F3) has one component.

Proor. By using the method in Section 4.1, we construct K (Fs) from Fj in Figure 4.10
O

and count the number of components.

PROPOSITION 4.2.8. Let F, be an n-fan-sunflower and K(F,) be its associated link. Then
K(F,) is a 2-link if n is even where n > 2. And if n is odd where n > 3 then K(Fy) is a

knot,
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FIGURE 4.10. Fj and its corresponding Link K(F3)

PROOF. By induction on n. If n = 2, then K(F) is a link 5% which has two components
from the table of knots in the Appendix. Furthermore, if n = 3 then K(F3) has one
component from Lemma 4.2.7. Therefore, the proposition is true for n = 2,3. Assume it
is true for n = 2m — 1 and 2m for some m > 1. Then we are going to show that it is also
true for n = 2m + 1 and 2m + 2. We start with a d-fan-sunflower, D say, and increase it
to a (d + 2)-fan-sunflower. Assume that each diagram in the figure represents the number
L(K(F,)) of the diagram. Thus by applying Propositions 4.1.7(z), 4.1.7(ii) and 4.1.5(4i1)

accordingly, we get Figure 4.11.

FIGURE 4.11. Computation of L(K(Fy))

Hence L(K( Flay2)) = L(K(Fy)). Thus substituting (d + 2) by n we have the following

equations:

L(K(Fams) = LE(Femn-1)),
L(K(Fomi)) = L(K(Fam))-

Thercfore, the proposition holds by induction.
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PROPOSITION 4.2.9. Let WS\ {{a, e}, {6, b}} be an n-wheel-sunflower with a missing petal

{{a,c},{c,b}} and K(WS, \ {{a,c}, {c,b}}) be its corresponding link. Then K(W S, \
{{a,c}, {c,b}}) is a 2-link if n is even. Otherwise it is a knot.

PROOF. We use induction on n. For n = 2, then WS, \ {{a,c},{c,b}} is a 2-wheel
with one petal Wa U {{a,c},{c,b}}. Hence by Proposition 4.2.6, we know that KW,y U
{{a,c},{c,b}}) is a 2-link. Assume it is also true for n = 2m — 1,2m for some m > 1.
Now consider n = 2m + 1, 2m + 2. We are going to start with an n-wheel-sunflower with a
missing petal, WS, \ {{q, c},{c,b}}, and trace the rim edge {a,b} without a petal. Thus

by applying Proposition 4.1.5(v) we have Equation 4.2.2 from Figure 4.12:

LIEWS,\ {{a, ¢} {c,b}})) = LK((WSa\ {{a,c}, {c,0}}) \ {a,b}))
(4.2.2) + L(K((WS,\ {{a,c},{c,b}})/{a,b})).

Thus (WS, \ {{a,c}, {c,b}}) \ {a,b} is an n-fan-sunflower, F,, so we can compute

FIGURE 4.12. Computation of L(K(WSa \ {{a,c},{c,b}}

L(K(F,)) by Proposition 4.2.8. However L(K((WS, \ {{a,c},{c,b}})/{a,b})) can be
simplified by deleting the parallel pair of edges using Proposition 4.1.7(iz). We thus get
an (n — 1)-wheel-sunflower with a missing spoke, WSgm-1) \ {a,z}. Hence L(K(WS, \
{{a,c}, {c, b} /{a,b})) = L(K(WSn-1) \ {a,z})) And we can compute L(K(WSm-1) \
{a,z})) by Proposition 4.2.2. Thus by substituting these back into the Equation 4.2.2

and letting WSy \ {{a, c}, {c,b} be a d-wheel-sunflower with a missing petal we get Equa-

tion 4.2.3:
(12” L(K (WS, \ {{(L (-}‘ {(T. b}})) = L([\’(Fn)) + L(K(WS(n—l) \ {a, fl’}))

. from Proposition 4.2.8. Hence L(K(WSq\

But we know that L(K(Fy)) = L(K(Fa42))
Thus for d = 2m+1 and d = 2m +2 we

{{a,c}, {c,b})) = L(K(W Sz \ {{a.c} {c:0}))
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PROPOSITION 4.2.9. Let WS, \ {{a, c}, {c,b}} be an n-wheel-sunflower with o missing petal
i) 1c; b}} and K(WS, \ {{a,c}, {c,b}}) be its corresponding link. Then K(WS, \
{{a,c},{c,b}}) is a 2-link if n is even. Otherwise it is a knot.

PROOF. We use induction on n. For n = 2, then WS, \ {{a,c},{c,b}} is a 2-wheel
with one petal W5 U {{a, c}, {c,b}}. Hence by Proposition 4.2.6, we know that K (W, U
{{a,c},{c,b}}) is a 2-link. Assume it is also true for n = 2m — 1,2m for some m > 1.
Now consider n = 2m+1,2m + 2. We are going to start with an n-wheel-sunflower with a
missing petal, WS, \ {{a, c},{c,b}}, and trace the rim edge {a,b} without a petal. Thus

by applying Proposition 4.1.5(v) we have Equation 4.2.2 from Figure 4.12:

LIEWS,\ {{a,c} {c,b}})) = L(K(WSa\ {{a,c}, {c,b}}) \ {a,b}))
(42.2) + LIK((WSa\ {{a,c},{c,b}})/{a, b})).

Thus (WS, \ {{a,c}, {c,b}}) \ {a,b} is an n-fan-sunflower, F,, so we can compute

FIGURE 4.12. Computation of L(K (W Sy \ {{a,c}, {c,b}}

L(K(F,)) by Proposition 4.2.8. However L(K((WS, \ {{a,c},{c,0}})/{a,b})) can be
simplified by deleting the parallel pair of edges using Proposition 4.1.7(7i). We thus get
an (n — 1)-wheel-sunflower with a missing spoke, WS@-1) \ {a,2}. Hence L(K((WS, \
i ol 1o, b1/ {a, b)) = LIK(W Sy \ {a,z})) And we can compute L(K(WSn-1) \

{a,2})) by Proposition 4.2.2.
and letting WS, \ {{a, ¢}, {c, b} be a d-wheel-sunflower with a missing petal we get Equa-

tion 4.2.3:

(423) LKW\ {{a,ch,{c,0}}) = LUK(F)+ LKW S-n) \{a,2}))-

&

) 7 e K(WS,
But we know that LIK(Fy)) = L(I\(F((H‘Z)))v from Proposition 4.2.8. Hence L(K(WSq\

5 = 2
({a,c}, {c.b})) = LUK (W Sz \ {{a:c}, {6, b)) Thus for d = 2m +1 and d = 2m +2 we
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have:
L(I((H/S(Q’IHI) \ {{a C}> {C? b}))
L(A/(”/S(QNHQ) \ {{a: C}7 {Cv b}))

Therefore, the proposition holds for any n.

Il

LIK(WS(am) \ {{a, ¢}, {c, b})),
L(K(WS(2m+1) \ {{aa c}v {Cr b}))



Conclusion

This thesis discusses a new class of graphs called wheel-sunflowers. The Tutte polynomials
of wheel-sunflowers and their applications have also been considered. We now review the

results obtained and give some suggestions for future research.

Chapter two gives the definition of wheel-sunflower graphs, their properties and charac-
terizations of the cycle matroid M(WS,,) of an n-wheel-sunflower. The characterizations
are used to compute the Tutte polynomial of M (WS, ) from Tutte polynomials of general-
ized parallel connections [3]. It would be interesting though to find the explicit expression
for Tutte polynomials of wheel-sunflowers. Such an expression may be useful to evaluate

reliability of wheel-sunflower networks in random graph theory.

Chapter three applies the theory of Tutte polynomials to prove T-uniqueness of wheel-
sunflowers. We have proved that for n > 4, WS, is T-unique. The proof mimicks the
proof of T-uniqueness of graphs such as wheels. T-unique graphs and matroids have re-
ceived much attention [11, 12, 13]. It could be more interesting to consider T-uniqueness

of wheel-sunflowers using other polynomials such as the chromatic polynomial and the
matching polynomial.

Chapter four also applies the theory of Tutte polynomials to classify links associated

with wheel-sunflowers and their variations. In this chapter, we have proved that the link

K(WS,) coresponding to an n-wheel-sunflower is a 3-link if n is even. Otherwise K(WS,,)

ok it e i : rtain edges in
is a 2-link. We have also shown how these links change with removal of certa g

! . - tain a graph which
WS,. For example, by removing one "outer” triangle from W Sy, we ob grap

we have called an n-Fan-sunflower, Fy,. The link K (F,) corresponding to Fy is a 2-link

if n is even. Otherwise K (F,) is a knot. It would be interesting to consider k-sums of

wheel-sunflowers and their corresponding links.
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acyclic, 4 forechod
acyclic subset, 4

connection, 14

basis, 4 generalized parallel connection, 1, 5
bijection, 4 girth, 4

bipartite graph, 25 graph, 32

expression, 13 ground set, 4

Boolean algebra, 11

hyperplane, 10
characteristic polynomial, 13

chord, 4, 21 independent set, 4

circuit, 4 independent sets, 4

coloop, 4 induced subgraph, 3

complete graph, 25 interval, 11

component, 6 invariant, 5

component number, 33 isolated vertices, 3

connected, 3 isomorphism, 4

connected components, 3

contraction, H knot, 6

cycle, 3 knot diagram, 6
matroid, 4 knot universe, 6

deletion, 5 ladder, 20
dependent, 4 line, 10

diamond, 29 link, 32

direct sum, 5 link diagram, 6
link universe, 33
edge set, 3 linking number, 34

edge-set, 3 loop, 4

endpoint, 3
matroid, 4

invariant, 5

flat, 5, 10
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maximal independent set, 4
graph, 32

medial graph, 32, 34
minimal dependent set, 4

flat, 10

nullity, 3, 5, 20

parallel, 5
parallel pair, 35
partite set, 26
path, 3
pentagon, 3, 21
petal, 8, 35
planar, 4

plane, 10

1

Sell Cross 5

vertex set. 3

vertices, 6

wheel, 20
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wheel-sunflower, 32
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